

CyberKnife Technology in Ablative Radiation Therapy

Jun Yang PhD Cyberknife Center of Philadelphia Drexel University Jan 2017

Objectives

Components and work flow of CyberKnife
Motion management of CyberKnife
Dosimetry characteristics of CyberKnife
New development of CyberKnife
QA of CyberKnife

CyberKnife Components & treatment Motion management Dosimetry Quality Assurance

CyberKnife[®] Components

Linear Accelerator

- 330 lbs.
- 6 MV X-ray
- 1000 MU/min
- Three set collimators
 - 5 60 mm circular collimators
 - 5 60 mm dodecagonal (12-sided) IRIS variable aperture collimators

100 x 120 mm MLC

Robot Specifications

Made by KUKA of Germany

- 6 axis / joint motion
- 1,525 kg (w/Linac)
- 210 kg payload
- 208 VAC, 3 Phase (PDU)
- 0-45 °C operating range
- <75% Relative humidity</p>
- 13 ft x 16 ft operating envelope (3 m reach)
- 0.12 mm repeatability

5° Treatment Couch (Axum)

Accommodates up to 159 kg patient (350 lbs) Motorized control with 5 degrees of freedom Inferior-superior Anterior-posterior Right - left Roll Pitch

Image Tracking System

- 2 diagnostic X-Ray sources
 + 2 ASi image detectors
 (cameras)
- Patient imaged at 45° orthogonal angles
- Real-time, live images compared against DRRs generated from CT
- During treatment, Robot adjusts position based on the comparison

Dx X-Ray Sources

Amorphous Silicon Detectors

Development of CyberKnife

G4

M6

Fixed Cones

ML

***** 41 leaf pairs

* 2.5 mm leaf thickness @ 800 mm
* 120 mm x 100 mm field size
* 90.0 mm leaf height
* 0.5 mm leaf position accuracy
* 0.4 mm reproducibility

* Transmission: <0.3% avg (<0.5% max)
* Full leaf inter-digitation
* Full leaf over-travel
* Single Focus MLC

Cyberknife G4 -> M6

Digital Platform Different Robot position

MLC -> IMRT capable SBRT: faster, slightly better SBRT plan IMRT: comparable with Linac based

SBRT Plan Comparison

Fixed Cones

CyberKnife Components & treatment Motion management Dosimetry Quality Assurance

Case Specific Tracking Modalities

Skull Tracking ----- Brain tumor
X-site (spine) Tracking ----- Spine tumor
Fiducial Tracking ----- Soft tissue
Synchrony Tracking ----- Moving Soft tissue
X-sight Lung ---- Moving visible lung tumor
Lung Optimization Treatment --- a full set of tracking for lung tumor without fiducial

Tracking Methodology

 DRR (Digitally Reconstructed Radiographs) library used as references.
 X-ray images acquired in real time
 Registration between 2 DRR and X-ray images
 The patient's rigid transformation calculated

Skull Tracking and Correction

Accuracy - Overall translation error ~ 0.5 mm, rotation error ~ 0.5 degree.

Spinal Tracking and Correction

Special application: Bony Structures

Fiducial Tracking and Correction

Special application: Surgical Clips

Tumor Respiratory Motion Consideration

Gating

Breath Hold

Synchrony Motion Tracking and real-time Correction

Synchrony Motion Tracking and real-time Correction

Xsight-Lung Tracking and realtime Correction

Special application: Sternum, Metal Stent, Large Calcification

Lung tumor tracking without Xsight[®] Lung Tracking Radiosurgical margins

Similarity Measure

Maximum similarity

Lung tumor tracking without fiducials

Xsight[®] Lung Tracking

Radiosurgical margins

Lung tumor tracking without fiducials

Xsight[®] Lung Tracking

Radiosurgical margins

1-View Tracking*

ITV expansion in non-tracked direction

Lung tumor tracking without fiducials

Xsight[®] Lung Tracking

Radiosurgical margins

1-View Tracking*

ITV expansion in non-tracked direction

O-View Tracking* ITV expansion in all directions

Targeting Accuracy

Mechanical accuracy

- 0.12 mm (Kuka Specification 2004)¹
- Targeting accuracy for targets not affected by respiration
 - 0.95 mm (Xsight® Specification)
 - 0.52 +/- 0.22 mm (Muacevic et. Al. 2006)²
 - 0.49 +/- 0.22 mm (Ho et. al. 2008)³
 - 0.4 +- 0.2 mm (Antypas and Pantelis $2008)^4$
 - 0.47 +- 0.24 mm (Drexler & Furweger 2009)⁵
- Targeting accuracy for targets that move with respiration
 - **1.5 mm** (Synchrony[®] Respiratory Tracking System specification)
 - 0.70 +/- 0.33 mm (Dieterich et. Al. 2004)⁶
 - 0.47 +- 0.24 mm (Drexler and Furweger 2009)⁵
- 1 Kuka KR240-2 Specification 04.2004.05
- 2 Muacevic A, et. al. Technical description, phantom accuracy and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine. 2006 Oct;5(4):303-12.
- 3 Ho AK, et al. A study of the accuracy of Cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery 2007;60:147-156.
- 4 Antypas C and Pantelis E. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol 2008;53:4697-4718
- 5 Drexler and Furweger. Quality assurance of a robotic, image guided radiosurgery system. WC 2009, IFMBE Proceedings 25/I, 492-495, 2009
- 6 Dieterich S, et. al. The CyberKnife Synchrony Respiratory Tracking System: Evaluation of Systematic Targeting Uncertainty. White paper 2004.

CyberKnife Components & treatment Motion management Dosimetry Quality Assurance

Dosimetry: various beam arrangements

Non-isocentric -- Conformal

Non-coplanar beams

7 Beam IMRT

"Tomo", single Plane RT

Cyberknife – 80 Beam SRS

Applications– Plan Evaluation

Conformal Non-isocentric Plan

Fast Fall-off Isocentric Plan

CyberKnife Components & treatment Motion management Dosimetry Quality Assurance

Quality Assurance

- End 2 End test
- BB test
- AQA
- Beam analysis
- Plan dose verification
- Image system test
- Daily, Monthly, Quarterly and Annually QA

QA guidelines: TG 135: Quality assurance for robotic radiosurgery

IV.B. Daily QA

Section	Item	Tolerance
II.A.2	Safety interlocks (Door, console EMO, Key)	Functional
	CCTV cameras and monitors	Functional
	Audio monitor	Functional
	Collimator assembly collision detector	Functional
II.B.1	Accelerator warm-up: 6000 MU for open chambers, 3000 MU for sealed chambers	N/A
	Accelerator output	<2%: no change needed
		>2%: adjust calibration
	Detection of incorrect and missing secondary collimator	Functional
III.B.2	Visual check of beam laser and a standard floor mark.	<1 mm
III.C.1	AQA test	< 1 mm from baseline

IV.C. Monthly QA

Section	Item	Tolerance
II.A.2	Safety interlocks.	Functional
II.B.2	Energy constancy.	2%
	Beam symmetry.	>3%
	Beam shape.	>2% Compared to beam data
	Output.	> 2%
II.C.1	Imager alignment.	1 mm or center pixel \pm 2 pixels
II.C.3	Contrast, noise, and spatial resolution of amorphous silicon detector.	To be decided by user based on available literature
	Homogeneity/bad pixels.	
II.D	Custom CT model: CT QA (spatial accuracy, electron density).	See TG 66 (Ref. 29)
III.B.1	Verify relative location of beam laser vs. radiation CAX has not changed.	0.5 mm
III.B.2	Visually check isocentric plan to verify beam laser illuminates isocrystal; rotate through path sets each month	Laser on isocrystal for each node
III.C.2	Intracranial and extracranial E2E; set schedule to cycle through each clinically used tracking method and path.	${<}0.95~\mathrm{mm}$ or ${<}1.5~\mathrm{mm}$ for motion tracking
III.C.3	Nonisocentric patient QA or DQA; ideally performed quarterly.	DTA 2 mm/2%; Synchrony DTA 3%/3 mm
III.D	Observe Synchrony treatment or simulation; listen for unusual noise and visually check for vibrations.	No significant change

IV.D. Annual QA

Section	Item	Tolerance
II.A.2	EPO button	Functional
II.B.3	TG 51 or IAEA TRS-398, including secondary independent check.	Adjust calibration if >1% difference is found
	Beam data checks on at least three collimators, including largest and smallest collimator (TPR or PDD, OCR, output factors).	To be decided by user
	Dose output linearity to lowest MU/beam used.	1%
II.C.2	Imager kVp accuracy, mA station exposure linearity, exposure reproducibility, focal spot size.	See Table 1 for references
II.C.3	Signal to noise ratio, contrast-to-noise ratio, relative modulation transfer function, imager sensitivity stability, bad pixel count and pattern, uniformity corrected images, detector centering, and imager gain statistics.	Compare to baseline
II.D	TG 53 as applicable.	TG 53 (Ref. 26)
	CT QA (in addition to monthly).	See TG 66 (Ref. 29)
	Data security and verification.	Functional
III.B.2	2nd Order Path Calibration; currently only possible with the help of a service engineer.	Each node < 0.5 mm RMS < 0.3 mm
III.D	Check noise level of optical markers.	<0.2 mm
IV.C	Run Synchrony E2E test with at least 20 deg phase shift; analyze penumbra spread.	To be decided by user
IV.C	Monthly QA.	In addition to tolerances listed above, update all parameters and checklists
IV.B	Daily QA.	Update parameters

QA guidelines: AAPM-RSS Medical Physics Practice Guideline 9.a. for SRS – SBRT(Draft)

Table 2: Minimum equipment QA and tolerances for robotic linac systems

Frequency	Test	Tolerance
Daily*	Head laser alignment check	1.0 mm
*On days of	Safety interlocks	Functional
clinical use	Automatic QA (AQA) test*	Total targeting ≤ 1.0
	*If the clinic has both fixed cones and $Iris^{TM}$ collimator, the AQA test	mm from baseline, not
	should alternate between fixed cones and $Iris^{IM}$, with each system	exceeding
	tested at least weekly	manufacturer's
		specification
	Accelerator output constancy	± 3%
Monthly	Energy constancy	± 2%
	Beam symmetry, relative	\pm 3% for 40 mm field,
		\pm 4% for 60 mm field,
	Accelerator output constancy	± 2%
	Imager alignment	1mm or center pixels
		± 2 pixels
	Iris Field size spot check	0.5 mm, 3 or more
		field sizes $\geq 10 \text{ mm}$
	Picket fence for MLC (<i>if applicable</i>)	Visual check
Quarterly	E2E localization assessment	1.0 mm static target,
	(Each tracking mode used clinically)	1.5 mm motion
Lla		tracking
Annually	Emergency Power Off (EPO) button, safety interlocks	Functional
	Accelerator output	± 2.0%
	MU linearity (>10 MU to highest MU used clinically)	± 2%
	Path verification	$\leq 0.5 \text{ mm maximum}$
		per node, ≤0.3 mm
		average
	Imager K vp accuracy, mA station exposure linearity, isopost	$\pm 10\%, \pm 20\%$, and
	Deem lease and rediction beem alignment for some Iris and	0.5 mm from bogoling
	MLC	0.5 mm from baseline
	AQA baseline	Re-check AQA
		baseline
	Beam data verification -	$\pm 2\%$ from baseline
	Relative output factors for cones, Iris and/or MLC covering the	for > 1.0 cm apertures,
	range used clinically	\pm 5% from baseline
		for ≤ 1.0 cm apertures

Morning QA - Output

First select the beam angle setting (default degrees). Choose the image source from the drop down menu. Click Browse to open up the image file. Retate and or flip the image using the top menu such that the image positions match the lat When ready, click the process button to find the displacements in the X, Y, Z coordinates of the imaging plane.

1

Select Image	Browse Process
Image A	5 t
	Notes:
	Date:
Left	09-Jan-2017
	Time
	10:46:45
	10.40.45
	Image A Coordinates
Sup	X centroid offset : -0.22611 mm
	Y centroid offset : 0.12663 mm
Image B	Economicity (Pages) . 014718
Inf	Eccentricity (Beam): 0.14718 Eccentricity (Shadow): 0.20844
	Image B Coordinates
	X centroid offset : 0.012985 mm
	Y centroid offset : 0.38456 mm
Post	Eccentricity (Beam): 0.12375
	Eccentricity (Shadow) : 0,197

Monthly QA- Ouput/Energy

Monthly QA – Symmetry and Flatness/ Laser Alignment

A Cyberknife Laser Alignment Check Software

Monthly QA – IRIS Collimator Field Sizes

Monthly QA – E2E

Monthly QA – Imaging Center

Which of these following tracking modalities used in the lung cancer treatment can accommodate expiratory motion?

- 1 Xsight-lung tracking
- 2 Spine tracking
- 3 Synchrony Tracking (using fiducial)
- **4 Lung Optimization Treatment**

A: 1, B: 1, 2, 3 C: 1, 3, 4 D: 1, 2, 3, 4

Ans: C only the spine tracking in the list uses bony information of spinal skeleton as tracking landmark.

Ref: TG135 "Report of AAPM TG 135: Quality assurance for robotic radiosurgery"

What is not true for Cyberknife

- a. Allows multiple non-coplanar beams
- b. Allows single isocentric or non-isocentric shots, but not multiple isocentric shots
- c. Fully optimized with inverse planning
- d. Allows motion correction during treatment delivery

Answer: B

Ref:<u>Jun Yang</u>, John Lamond, Jing Feng, Xiaodong Wu, Rachelle Lanciano, and Luther W. Brady "CyberKnife System" Chapter of S Lo, MD etc, "Stereotactic Body Radiation Therapy" Springer Press, 2012, pp 37-52

