

Small Field Dosimetry Problem

Institutional variability in 6 MV Radionics SRS dosimetry

Dosimetric Variation with Detectors

Misadministration Media Coverage

Springfield Hospital Reports Radiation Overdose Administered to 76 Cancer Patients

February 26, 2010

🚼 Share | 🈏 Tweet 📊 🛛 +1 📑 Like

0

The New York Times reported on a recent report filed by CoxHealth medical facility in Springfield, Missouri where they admitted to overradiating 76 cancer patients during treatment. The majority of the patients were being treated for brain cancer, and received about a 50% overdose of radiation therapy. A hospital employee improperly calibrated the machine used to administer the radiation.

The New York	Eimes			U.S	-	Stereotactic therapy delivers radiation in such high doses that usually only one treatment is required. It is commonly used to treat small <u>tumors</u> in the head, which must be firmly stabilized allowing radiation to be delivered to a precise location				
WORLD U.S. N	.Y. / REGION	BUSINESS	TECHNOLOGY	SCIENCE	HEALTH	The empression of the Contemport of the second relation.				
POLITICS EDUCA	TION					the equipment, made by BrainLAB, and the hospital began questioning whether the machine				
Radiation	Errors	Repor	ted in Mi	ssouri		had been installed correctly in 2004, in a process called commissioning.				
By WALT BOGDANICH Published: February 24	and REBECCA F 4, 2010	R. RUIZ		.550411		The overdoses at CoxHealth occurred in a state where there is little or no government oversight of radiation therapy, a fact that Robert H. Bezanson, the hospital's president and chief executive, chose to emphasize.				
A hospital in Mi patients, the vas	issouri said st majority v	Wednesday with brain <u>c</u> a	that it had ove ancer, during a	erradiated five-year	76 period	On Wednesday, he released a letter that he wrote to the <u>Food and Drug Administration</u> , saying that its recent decision to toughen oversight of diagnostic radiation did not go far enough.				
because powerf even with a repr	ul new radia resentative o	ation equip of the manu	nent had been Ifacturer watch	set up inc ning as it w	orrectly as done	"The initiative should be broadened to include regulation of medical radiation therapy as well," he wrote. "We have also learned that the incident here at CoxHealth is, unfortunately, not an isolated occurrence. Rather, similar instances of medical overradiation have occurred at other				
The hospital, Co undergoing a pa	oxHealth in articular typ	Springfield e of treatme	, <u>said</u> half of al ent — stereotae	l patients tic <u>radiatio</u>	on	<u>hospitals</u> throughout the country. Without increased regulation and oversight, these instances of medical overradiation will likely continue."				
<u>therapy</u> – were medical physicis routine checks of	overdosed l st at the hos	by about 50 spital miscal ct five years	percent after a librated the ne failed to catch	an unident w equipme the error.	tified ent and	Wrong detector used for				
Das (5)						BrainLab cone calibration				

Misadministration Media Coverage

HOME PAGE TODAY'S PAPER VIDE	O MOST POPULAR	TIMES TOPICS			Subsc	ribe to Th	ne Times	Log In R	egister N	low Help Tim	esPeople
The New York Times		Search All NYTimes.com					ck Here				
WORLD U.S. N.Y. / REGION BU	JSINESS TECHNOLO	DGY SCIENCE	HEALTH	SPORTS	OPINION	ARTS	STYLE	TRAVEL	JOBS	REAL ESTATE	AUTOS
A Pinpoint Beam S Healing	Strays Invisi	bly, Harı	ning I	nstead	l of	Tara	Parker	r-Pope on	Healt	h >>>	
By WALT BOGDANICH and KRISTINA RE Published: December 28, 2010	BELO				(CAR)	I	herap 0, 2011, 4	y for Depre	ession		
The initial accident report offe unidentified hospital had adm patients during identical medi	ered few details, ex inistered radiation cal procedures.	cept to say that overdoses to t	at an three		25)		g Profit , 2011, 2 ies: Ga	S Before P	atients hlete's I	Foot	
Enlarge This Image With the provide the second secon	It was not until r that the full impo- happened in the i began to surface warnings, which extra vigilant wh device that delive pinpoint radiation of the body. Marci Faber was patients. She had Hospital in Illino	many months ort of what has hospital last ye in urgent nati advised docto een using a par ers high-intens n to vulnerabl one of the thr l gone to Evan is seeking trea	later d ear onwide rs to be rticular sity, e parts ree siton tment for	pain ema	anating		u Be A , 2011 d: Does 1? , 2011	ddicted to Exercisin	Foods? g Make	You Drink Mo	ore
Articles in this series examine issues arising from the increasing use of medical radiation and the new technologies that deliver it. Previous Articles in the Series »	from a nerve deep inside her head. Today, she is in a nursing home, nearly comatose, unable to speak, eat or walk, leaving her husband to care for their three young daughters.										_
IJDas (6)										NYU Schoo	ol of Medicin
										NTO LANGU	NE WEDICAL CENT

What is a Small Field?

- Lack of charged particle
 Dependent on the range of secondary electrons
 - \star Photon energy
- Collimator setting that obstructs the source size

NYU School of Medicine

Detector is comparable to the field size

CPE & Electron Range

- ❖ Electron range= d_{max} in forward direction
 ❖ Electron range in lateral direction
 ★ Nearly energy independent
 ★ Nearly equal to penumbra (8-10 mm)
 ❖ Field size needed for CPE
 - ★ Lateral range
 - ★ 16-20 mm

IJDas (8)

Definition of Small Fields

Energy Fluence Penumbra/Output

Source Size

IAEA/AAPM Proposed Pathway

Why So Much of Fuss?

- Reference (ref) conditions cannot be achieved for most SRS devices (cyberknife, gammaknife, tomotherapy etc)
- ✤ Machine Specific reference (msr) needs to be linked to ref
- Ratio of reading (PDD, TMR, Output etc) is not the same as ** ratio of dose

 $oldsymbol{M}$,

NYU School of Medicine

U LANGONE MEDICAL

$$\frac{D_1}{D_2} = \frac{M_1}{M_2} \bullet \begin{bmatrix} k_{f_{clin}}, f_{msr} \\ k_{Q_{clin}}, Q_{msr} \end{bmatrix} \qquad \begin{bmatrix} k_{g_{clin}}, f_{msr} \\ k_{Q_{clin}}, Q_{msr} \end{bmatrix} = \frac{D_1}{D_2} \bullet \frac{1}{D_2}$$

Alfonso et al. Med Phys 35, 51/9-5186 (2008)

Relative Dosimetry

$$\begin{split} D_{w,Q_{\rm msr}}^{f_{\rm msr}} &= M_{Q_{\rm msr}}^{f_{\rm msr}} N_{DW,Qo} k_{Q,Qo} k_{Q,Mo}^{f_{\rm msr},f_{\rm ref}} \\ k_{Q_{\rm msr},Q}^{f_{\rm clin}f_{\rm msr}} &= \frac{M_{Q_{\rm clin}}^{f_{\rm clin}}}{M_{Q_{\rm msr}}^{f_{\rm msr}}} \left[\frac{\left(D_{w,Q_{\rm clin}}^{f_{\rm clin}} \right) / \left(M_{Q_{\rm clin}}^{f_{\rm clin}} \right)}{\left(D_{w,Q_{\rm msr}}^{f_{\rm msr}} \right) / \left(M_{Q_{\rm msr}}^{f_{\rm clin}} \right)} \right] = \frac{M_{Q_{\rm clin}}^{f_{\rm clin}}}{M_{Q_{\rm clin}}^{f_{\rm msr}}} k_{Q_{\rm clin}}^{f_{\rm clin},f_{\rm msr}} \\ k_{Q_{\rm clin},Q_{\rm msr}}^{f_{\rm clin},f_{\rm msr}} &= \frac{\left(D_{w,Q_{\rm clin}}^{f_{\rm msr}} \right) / \left(M_{w,Q_{\rm msr}}^{f_{\rm clin}} \right)}{\left(D_{w,Q_{\rm msr}}^{f_{\rm clin}} \right) - \left(M_{w,Q_{\rm msr}}^{f_{\rm clin}} \right)} \\ k_{Q_{\rm clin},Q_{\rm msr}}^{f_{\rm clin},f_{\rm msr}} &= \frac{\left(D_{w,Q_{\rm clin}}^{f_{\rm clin}} \right) / \left(M_{w,Q_{\rm msr}}^{f_{\rm clin}} \right)}{\left(D_{w,Q_{\rm msr}}^{f_{\rm clin}} \right) - \left(M_{w,Q_{\rm msr}}^{f_{\rm clin}} \right)} \\ k_{Q_{\rm clin},Q_{\rm msr}}^{f_{\rm clin},f_{\rm msr}} &= \frac{\left(S_{w,air} \right) f_{clin} \cdot f_{f_{\rm clin}} }{\left(S_{w,air} \right) f_{msr} \cdot f_{msr}} \\ k_{Q_{\rm clin},Q_{\rm msr}}^{f_{\rm clin},f_{\rm msr}} \\ &= \frac{\left(S_{w,air} \right) f_{clin} \cdot f_{msr} }{\left(S_{w,air} \right) f_{msr} \cdot f_{msr}} \\ \end{array}$$

IJDas (18)

Small Field Dosimetry Publications

Dosimetry of Small Static Fields Used in External Beam Radiotherapy

An IAEA – AAPM International Code of Practice for Reference and Relative Dose Determination

IAEA-TRS 483, 2017

IJDas (19)

+ TG-155 (AAPM) Relative dosimetry

Meaning of k in Micro-Chambers

dicine

NYU LANGONE MEDICAL CENTE

Radiological Parameters

			s _{w,air}			SPMMA,		
6 MV beams	Beam quality (TPR _{20,10})	Andreo (1994) ^a	This work	Ratio this work/ Andreo	Andreo (1994) ^a	This work	Ratio this work/ Andreo	Configuration
Elekta SL-18								
radiosurgery								
$10 \times 10 \text{ cm}^2$	0.690	1.1187	1.1188	1.000	1.0853	1.0856	1.000	figure 1(a)
1.0 cm diameter			1.1155	0.997		1.0819	0.997	figure 1(b)
0.3 cm diameter			1.1153	0.997		1.0817	0.997	figure 1(c)
Siemens Primus MLC								
$10 \times 10 \text{ cm}^2$	0.677	1.1213	1.1221	1.001	1.0880	1.0852	1.001	figure 1(d)
2 × 2 cm ² irregular on-axis			1.1203	0.999		1.0870	0.999	figure 1(e)
2 × 2 cm ² irregular 8 cm off-axis			1.1250	1.003		10922	1.004	figure 1(f)
MLC transmission			1.1300	1.008				figure 1(i)
IMRT beam			1.1201	0.999				figure 12
$(10 \times 10 \text{ cm}^2 \text{ approx})$								0

IJDas (22)

Sanchez-Deblado et al, Phy. Med. Biol., 48, 2081, 2003

Machine type	%dd(10) _x	$(ar{L}/ ho)_{ m air}^m$								
		Water	PMMA	Carbon	C-552					
Linac	66.3 ^a	1.1208	1.0878	0.9876	0.9836					
Cyberknife	60.8 ^b	1.1194	1.0859	0.9854	0.9817					

¹For a 10 × 10 cm² field at 100 cm SSD from a Varian 6 MV-linear accelerator ^bFor a 60 mm circular collimator at 80 cm SSD from a Cyberknife system.

F. Araki, Med. Phys. 33, 2955-2963 (2006).

Correction Factors

Correction Factor depends	on:
Field size	
Source size (FWHM;	
machine type)	
Detector type	

Francescon, et al Med Phys 35, 504, 2008

IJDas (25)

TABLE VII. F_{corr} of the four detectors for the 5, 7.5, and 10 mm collimators, as a function of the FWHM.

A16		$F_{\rm corr}$	
FWHM (mm)	5 mm coll	7.5 mm coll	10 mm coll
1.4	1.067	1.021	1.008
1.8	1.087	1.017	1.007
2.2	1.102	1.020	1.012
2.6	1.112	1.027	1.010
Pin Point		$F_{\rm corr}$	
FWHM (mm)	5 mm coll	7.5 mm coll	10 mm coll
1.4	1.082	1.025	1.017
1.8	1.099	1.024	1.013
2.2	1.110	1.025	1.013
2.6	1.124	1.037	1.016
Diode		F_{corr}	
FWHM (mm)	5 mm coll	7.5 mm coll	10 mm coll
1.4	0.953	0.966	0.978
1.8	0.955	0.966	0.978
2.2	0.957	0.967	0.978
2.6	0.940	0.967	0.978
Diamond		$F_{\rm corr}$	
FWHM (mm)	5 mm coll	7.5 mm coll	10 mm coll
1.4	1.066	1.001	1.001
1.8	1.093	1.007	1.000
2.2	1.107	1.010	0.999
2.6	1.123	1.012	1.001

 $k^{J_{\rm clin},J_{\rm msr}}$ Q_{clin}, Q_{msr} of Linear Accelerators (Varian)

Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors

G. Cranmer-Sargison^{a)}

Department of Medical Physics, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada and Division of Medical Physics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, United Kingdom

S. Weston

Department of Medical Physics and Engineering, St James's University Hospital, Leeds LS9 71F, United Kingdom

J. A. Evans

Division of Medical Physics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, United Kingdom

N. P. Sidhu

Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada and Department of Physics and Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada

D. I. Thwaites

Institute of Medical Physics, School of Physics, University of Sydney, Sydney NSW 2006, Australia and Division of Medical Physics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, United Kingdom

(Received 21 April 2011; revised 11 October 2011; accepted for publication 14 October 2011; published 23 November 2011)

IJDas (28)

Med. Phys. 38 (12), 6992, 2011

$\mathcal{L}_{\mathcal{Q}_{\text{clin}},\mathcal{Q}_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$ of Linear Accelerators

Calculation of $k_{Q_{clin},Q_{msr}}^{f_{clin},f_{msr}}$ for several small detectors and for two linear accelerators using Monte Carlo simulations

P. Francescon,^{a)} S. Cora, and N. Satariano Department of Medical Physics, ULSS 6 – 36100 Vicenza, Italy

Med. Phys. 38 (12), 6513-6527, 2011

Contents lists available at SciVerse ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Experimental small field 6 MV output ratio analysis for various diode detector and accelerator combinations

Gavin Cranmer-Sargison^{a,b,*}, Steve Weston^{b,c}, Narinder P. Sidhu^{a,d}, David I. Thwaites^{b,e}

Radiotherapy and Oncology 100 (2011) 429–435

IJDas (29)

$k_{\mathcal{Q}_{\text{clin}},\mathcal{Q}_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$ Cyber Knife

	5 mm	1	7.5 m	m	10 mm			
Detector	$M_{\mathcal{Q}_{ ext{clin}}}^{f_{ ext{clin}}}/M_{\mathcal{Q}_{ ext{msr}}}^{f_{ ext{msr}}}$	$k_{\mathcal{Q}_{\text{clin}},\mathcal{Q}_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$	$M_{\mathcal{Q}_{ ext{clin}}}^{f_{ ext{clin}}}/M_{\mathcal{Q}_{ ext{msr}}}^{f_{ ext{msr}}}$	$k_{\mathcal{Q}_{\mathrm{clin}},\mathcal{Q}_{\mathrm{msr}}}^{f_{\mathrm{clin}},f_{\mathrm{msr}}}$	$M_{Q_{ m clin}}^{f_{ m clin}}/M_{Q_{ m msr}}^{f_{ m msr}}$	$k_{\mathcal{Q}_{\mathrm{clin}},\mathcal{Q}_{\mathrm{msr}}}^{f_{\mathrm{clin}},f_{\mathrm{msr}}}$		
A16	0.626 (15)	1.089 (3)	0.811 (10)	1.018 (3)	0.866 (6)	1.010 (3)		
PinPoint	0.620 (17)	1.101 (3)	0.801 (7)	1.024 (3)	0.862 (5)	1.015 (3)		
Diode 60008	0.726 (1)	0.943 (3)	0.873 (1)	0.949 (3)	0.912 (1)	0.964 (3)		
Diode 60012	0.705 (1)	0.956 (3)	0.847 (2)	0.966 (3)	0.891 (1)	0.978 (3)		
EDGE	0.726 (1)	0.948 (3)	0.864 (1)	0.955 (3)	0.906 (1)	0.966 (3)		
Alanine	0.544 (8)	1.249 (8)	0.785 (12)	1.059 (4)	0.855 (13)	1.019 (3)		
TLD	0.668 (4)		0.809 (6)		0.880 (8)			
EBT films	0.659 (17)		0.811 (16)		0.853 (18)			
Polymer gels ^a	0.702 (21)		0.872 (27)		0.929 (29)			

IJDas (30)

Pantelis et al, Med Phy. 37, 2369-2379, 2010

Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: A PENELOPE Monte Carlo study

Hamza Benmakhlouf^{a)}

Med Phys, 41(4), 041711, 2014

Department of Medical Physics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden, and Department of Physics, Medical Radiation Physics, Stockholm University and Karolinska Institute, SE-171 76 Stockholm, Sweden

Josep Sempau

Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, E-08028, Barcelona, Spain

Pedro Andreo

Department of Physics, Medical Radiation Physics, Stockholm University and Karolinska Institute, SE-171 76 Stockholm, Sweden

IJDas (31)

Variation of $k_{Q_{clin},Q_{msr}}^{f_{clin},f_{msr}}$ for the small-field dosimetric parameters percentage depth dose, tissue-maximum ratio, and off-axis ratio

Paolo Francescon^{a)}

Department of Radiation Oncology, Ospedale Di Vicenza, Viale Rodolfi, Vicenza 36100, Italy

Sam Beddar

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77005

Ninfa Satariano

Department of Radiation Oncology, Ospedale Di Vicenza, Viale Rodolfi, Vicenza 36100, Italy

Indra J. Das

Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202

Effect of Beam Energy

IOP Publishing | Institute of Physics and Engineering in Medicine

Physics in Medicine and Biology

Phys. Med. Biol. 59 (2014) 4973–5002 Correction-less dosimetry of nonstandard photon fields: a new criterion to determine the usability of radiation detectors

Y Kamio^{1,2} and H Bouchard^{1,2,3}

¹ Département de physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada

² Centre hospitalier de l'Université de Montréal (CHUM), 1560 Sherbrooke est, Montréal, Québec H2L 4M1, Canada

³ Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK

					6 MV								
	Square field size (cm)												
Detectors	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.50	3.00				
MicroLion N. Diamond U. diode Alanine S. Fiber	3.1 3.8 4.9 1.4 0.5	2.0 2.4 3.0 0.6 0.4	1.3 1.5 1.9 0.3 0.3	0.8 1.0 1.2 0.2 0.3	0.5 0.6 0.8 0.1 0.2	0.3 0.4 0.5 0.1 0.2	0.2 0.3 0.4 0.1 0.2	0.1 0.2 0.2 0.0 0.1	0.1 0.1 0.0 0.1				

*Values are rounded to the nearest 0.1%.

					25 MV								
	Square field size (cm)												
deciors.	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.50	3.00				
ional Ion Diamona diode anine I ibey	2.4 3.3 4.0 1.5 0.7	1.8 2.1 2.8 0.8 0.5	1.4 1.5 2.1 0.6 0.4	$1.0 \\ 1.0 \\ 1.6 \\ 0.4 \\ 0.3$	0.8 0.8 1.3 0.3 0.3	0.6 0.6 1.0 0.2 0.2	0.5 0.5 0.9 0.2 0.2	0.3 0.3 0.5 0.1 0.1	$\begin{array}{c} 0.2 \\ 0.1 \\ 0.3 \\ 0.1 \\ 0.1 \end{array}$				

Machine. Cone & Depth?

Can small field diode correction factors be applied universally?

Paul Z.Y. Liu^{a,b,*}, Natalka Suchowerska^{a,b}, David R. McKenzie^a

^a School of Physics, The University of Sydney; and ^b Department of Radiation Oncology, Chris O'Brien Lifehouse, Camperdown, Australia

Radiotherapy Oncology, 112, 442-446, 2014

$k_{\mathcal{Q}_{clin}}^{f_{clin}}, g_{msr}^{f_{msr}}$ for Detectors and Devices

$k_{Q_{clin}}^{f_{clin}}, f_{msr}$ of Different Devices and Selected Detectors

Cyber Knife		ł	Field	size	(cm))							
Detector		5.0) 4.0	3.5	3.0) 2.:	5 2.	0 1.5	1.2	1.0	0.	8 0.6	§ 0.5
PTW-60019 CVD diamond		1.000	1.000	1.000	0.999	0.999	9 0.99	3 0.995	0.991	0.988	0.98	4 0.97	8 0.975
PTW-31018 liquid ion chamber		1.000	0.999	0.999	0.999	0.99	8 0.998	0.998	0.998	0.999	1.00	2 1.01	0 1.019
Sun Nuclear Edge Detector		1.000	1.000	1.000	0.999	0.99	8 0.993	0.989	0.982	0.975	0.96	6 0.95	4 0.946
Standard Imaging W1 plastic scintillator		1.000	1.000	1.000	1.000	1.000	0 1.000	1.000	1.000	1.000	1.00	0 1.00	0 1.000
Tomotherapy													
PTW-60019 CVD diamond	1.000	0 1.000	0 1.000	1.000	0.999	0.99	7 0.993	0.989	0.984	0.977	0.968	0.962	0.955
PTW-31018 liquid ion chamber	0.997	0.995	5 0.99 4	0.994	0.993	0.992	2 0.99	0.991	0.992	0.994	1.003	1.015	1.038
Sun Nuclear Edge Detector	1.000	0 1.000	0 1.000	0.999	0.998	0.994	4 0.98	5 0.976	0.966	0.951	-	-	-
Standard Imaging W1 plastic scintillator	1.000	1.000	1.000	1.000	1.000	1.00	0 1.000	1.000	1.000	1.000	1.000	1.000	1.000
						•							
MLC, Linac													
PTW-60019 CVD diamond	1.000	1.000	1.000	1.000 ().999 (0.997	0.993 (0.989 ().984	0.977	0.968	0.962	0.955
PTW-31018 liquid ion chamber	0.998	0.996	0.994	0.994 ().993 (0.993	0.992	0.992 ().993	0.995	1.005	1.017	1.039
Sun Nuclear Edge Detector	1.000	1.000	1.000	0.999 (0.998 (0.994	0.986	0.976 (.966	0.951	-	-	-
Standard Imaging W1 plastic scintillator	1.000	1.000	1.000	1.000	1.000	000.1	1.000	1.000 1	000	1.000	1.000	1.000	1.000
JDas (45)			TR	S-48.	3. 201	6						NYU Scho	ol of Medicine

Validity of Proposed Method

Summary

- Understand the limit of small field, in terms of focal spot & spectral issues
- Detectors that are water equivalent like, MicroLion, MicroDiamond, Plastic Scintillators and EBT are best suited

NYU School of Medicine

- Use proper correction factors to correct detector response to correct for the dose
- Use data from for IAEA TRS-483 and TG-155 guidelines when published

IJDas (49)

