Acceptance Testing and Routine QA on an Elekta VersaHD

Jared Weatherford, MS, DABR Radiation Therapy Physicist

Acceptance Testing and Routine QA on an Elekta VersaHD

No conflicts of interest to disclose

Installation/Acceptance Timeline

May, 2013 Installation begins

July, 2013 Beam modeling begins

June, 2013 Acceptance & Commissioning begins

August, 2013 First patient treatment

Versa Overview

Versa Overview

iViewGT[™] MV imaging (planar)

Versa Overview

- Treatment Modalities
 - 6 MV
 - 10 MV
 - 15 MV
 - 6 MV FFF
 10 MV FFF
 - 6 15 MeV

Nominal energy	6MV	10MV
Maximum nominal dose rate (FFF)	1400	2200

With Dynamic Leaf Guide and MLC, effective leaf speed is 6.5 cm/s

- The scope of acceptance, commissioning, and routine tests of a machine is vast
- Only a portion of tests will be covered in this presentation as commonplace tests will be excluded.

Relative Dosimetry Checks

- PDDs
- Profiles (crossline, inline).

Relative Dosimetry Checks

• Measurement equipment

Sun Nuclear 3DS

PTW 0.125 cm³ Semiflex Chambers

Sun Nuclear Edge Detector

Relative Dosimetry Checks

• Measurement equipment

PTW 0.125 cm³ Semiflex Chambers

- Ion chambers are dose rate dependent (as dose rate increases, ion collection efficiency decreases)
 - Dose per time
 - Dose per pulse
- PTW 0.125 cm³ Semiflex has 99% collection efficiency if...
 - Dose per time \leq 12 Gy/s
 - Dose per pulse $\leq 1 \text{ mGy}$
- Versa maximum FFF dose rate is...
 - 0.4 Gy/s

1 mGy /pulse

At reference conditions

Relative Dosimetry Checks

- Lang et al.¹ studied collection efficiency vs. dose per pulse in FFF beams
 - PTW Semiflex (air-filled)
 - PTW microLion (liquid-filled).

Relative Dosimetry Checks

• Lang et al.¹ studied collection efficiency vs. dose per pulse in FFF beams

- Relative Dosimetry Checks
 - Lang et al.¹ conclusions
 - Don't use liquid-filled ion chambers for FFF relative dosimetry
 - Air-filled ion chambers are suitable for FFF relative dosimetry
 - Be aware of your detector's collection efficiency as a function of dose per time and dose per pulse.

- Relative Dosimetry Checks
 - Electrometer limitations
 - Electrometers can become overloaded
 - Be aware of the amp limit specification
 - Diodes have a higher sensitivity than ion chambers, resulting in a higher current through the electrometer.

Relative Dosimetry Checks

• Measurement Equipment

Sun Nuclear Edge Detector

- Used for small fields ($\leq 5 \times 5 \text{ cm}^2$)
- The same n-type diode die in the Edge Detector has been shown to have small instantaneous dose rate dependence²
- Energy dependence is insignificant for small field PDDs³
 - ± 1% agreement with RK chamber for 10 x 10 cm² PDD.

Relative Dosimetry Checks

- The reference detector can be placed inside of the head
- Convenient because you never have to move the reference detector
- Avoid perturbation in small fields
- Remove head covers and 1 piece of lead.

Relative Dosimetry Checks

• Specification for penetrative quality (PDD)

Relative Dosimetry Checks

• FFF Beam Specification Profile

6MV FFF 30 x 30 Inline

SPECIFICATION								
Measurement point distance from CAX as a % of the half	Nominal relative dose							
field width								
20%	94.6%							
50%	78.2%							
80%	62.6%							

Relative Dosimetry Checks

• Small Field FFF Beam Profile

• iComCAT

- Application that enables an external system to transmit a treatment prescription to the treatment control system (TCS)
- Create and send fields with customized segments
- Useful for creating QA test fields.
 - Picket fence
 - Leaf speed

• iComCAT

Connects to the Elekta Treatment Network

• iComCAT

T AccTest5.efs - iCOM Customer Acceptance Test (Not For Clinical Use) File Edit View R & V Tools Help D 😅 📓 🔒 📾 💼 🎇 🏜 🎽 • K < H > . 68 8 Not For Clinical Use - See Help About iCOMCAT Vx Metrics Send Field Confirm Settings Unconfirm Settings Clear Field Message Frequency (Hz) 0.83 Max Message Interval (sec) 1.40 Fx Vx ID Name Dose Administration Entry Target ID Name Patient ACC05.EFS Prescribed Patient ACC05.EFS Treatment Treatment Accumulated Beam Beam #5 Beam Beam #5 Beam Complexity Technique SimpleArc Accumulated Beam Leaf Width 1 Machine 6944 Session Finish Field 6844 Leaf Width Machine For Machine 6844 Beam MU 100 Delivered Control Points Reasons Pres. Set Rin CP 1 CP 2 CP **B&V** Inhibi Beam MU 100.0 100.0 100.0 Cum. Beam MU % 0 70 100 Segment MU1 30.0 30.0 Inhibits. Dose Rate Segment MU 2 32.0 30.0 Energy 6 MV 6 MV Step MU 30.0 30.0 Fluence Mode Wedged MU 30.0 30.0 XRAY XRAY **Radiation Type** Beam Timer 0.6 Wedge Position OUT IN ControlPoints Accessory 2 **DeliverySegments** Applicator Dose Rate Diaphragm Angle Interrupts 6 MV 6 MV Energy **Diaphragm Direction** Fluence Mode Diaphragm X1 10 **Radiation Type** X-Rays X-Rays Diaphragm X2 10 Terminates D1 Sg end Segment ID Diaphragm V1 10 Wedge Position IN IN Diaphragm Y2 10 Accessory 0 Fitment Contra Annali Geometrics MLC Ext. Channels Geometrics T MLC Ext. Channels Ready Fx: Connected OK Vx: Connected Seq No: 423 Field Terminated

Field and control point definitions (send to linac)

• iComCAT

	-10 IG	Fr 1		• K < F	* > > 7						. 6	2		
ot For Clinical Use - See	Help Ab	out iCOM	CAT		Vx Metrics									
end Field	Settings	Uncon	firm Settings	Clear Field	Message Frequ	ency (Hz) 0.83	Max Me	ssage Inte	rval (sec)	.40				
Fx	ID		N	-	Vx									-
Patient ACC05.EF	FS		ne.			ID Name					Dose Administration Entry Ta			
Treatment		— ii			Patient	ACC05.EFS				_	Prescribed			
Beam 5		- 1	Beam #5		Treatment						Accumulate	d		
Complexity					Beam	Cimeladua		Beam #5		_	Beam			
					Technique	SimpleArc		Leafly	Cal 1		Accumulate	dBeam		
Machine 6844	Finis	h Field	Leaf	Width	Machine	0044		Learv	vidin i		Session			
Beam MU 100	Delivere	d	Control	Points 3	r or machine	0044					Dessent			
	CP 1	CP 2	CP 3	×			Pres.	Set	Run	•	neasons			
Cum. Beam MU %	0	70	100		Beam MU		100.0	100.0	100.0	1	H&V Inhibit			
Dose Rate					Segment M	1U 1		30.0	30.0		Inhibits	Settings Not Confirmed		med
Energy	6 MV	6 MV			Segment M	1U 2		32.0	30.0			megnyri	integry (for freedy	
Fluence Mode					Step MU			30.0	30.0					
Radiation Type	XRAY	XRAY			Wedged M	U	1	30.0	30.0					
Wedge Position	OUT	IN			Beam Time	a.			0.6					
Accessory	0				ControlPoi	nts			3					
Applicator					DeliverySeg	gments			2					
Diaphragm Angle	0				Dose Rate		-		0		Internente			
Diaphragm Direction					Energy		_	6 MV	6 MV		in Kentupus			
Diaphragm X1	10				Fluence Mo	ode								
Diaphragm X2	10				Radiation T	ype		X-Rays	X-Rays		Terminator	D1 Sa e	nd	
Diaphragm Y1	10				Segment ID)	2	2	2		i erminares	or sy e		
Diaphragm Y2	10				Wedge Pos	ation		IN	IN					
Fitment		-			Accessory			0	0	+				
Conter Anala	0		0		Countries to a	Entr		F. 4. Ch	and an					

Control point definitions

• iComCAT

A For Christiller Con	I.L. AL		CAT							_								
tot For Linical Use - See	Help Ab				Vx Metrics	10000		12										
Send Field	ettings	Uncont	irm Settings C	ear Field	Message Frequ	ency (Hz) 0.83	Max Me	ssage Inte	rval (sec)	1.40								
Fx	ID		Name		Vx	ID			Name		Dose Administration	n Entry	Target					
Patient ACC05.EF	S				Patient	ACC05.EFS					Prescribed							
Treatment					Treatment					-	Accumulated							
Beam 5		1	Beam #5		Beam			Beam #5			Beam							
Complexity					Technique	SimpleArc					Accumulated Rean							
					Machine	6844		Leaf	vidth 1		Cassion							
Machine 6844	Finis	h Field	Leaf Width		For Machine	6844					Session							
Beam MU 100	Delivere	d	Control Points	3	T OF THOSE BILL						Reasons							
	CP 1	CP 2	CP 3				Pres	Set	Run		Devilate							
Cum. Beam MU %	0	70	100		Beam MU		100.0	100.0	100.0		Piev Innibit							
Dose Rate					Segment N	IU 1		30.0	30.0		Inhibits Settin	gs Not Con	firmed					
Energy	6 MV	6 MV			Segment N	IU 2		32.0	30.0		integr	(y nut nea	-97					
Fluence Mode					Step MU			30.0	30.0									
Radiation Type	XRAY	XRAY			Wedged M	U		30.0	30.0									
Wedge Position	OUT	IN			Beam Time	r			0.6									
Accessory	0				ControlPoi	nts			3					D		rd ar	dva	cif.
Applicator					DeliverySeg	ments			2						eco	u ai	iu ve	і п у
Diaphragm Angle	0	-			Dose Rate				0					,		c		
Diaphragm Direction					Energy			6 MV	6 MV		Interrupts			(\mathbf{r})	etur	'n tro	om lir	nac
Diaphragm X1	10				Fluence Me	de												
Diaphragm X2	10				Radiation T	ype		X-Rays	X-Rays									
Diaphragm Y1	10				Segment II)	2	2	2		Terminates D1 Sg	, end						
Diaphragm Y2	10				Wedge Pos	ition		IN	IN									
Fitment					Accessory			0	0									
	0	00	0	÷	Annliester					*								

• 3D kV Imaging

- Uniformity
- Low contrast visibility
- Spatial resolution
- Transverse scale
- Sagittal geometry

• 3D kV Imaging

- CATPHAN 503 or 600 is required
- Our institution uses CATPHAN 503, which has 3 modules
 - CTP404, CTP528, CTP486

CATPHAN 503

• 3D kV Imaging Uniformity

- Module is made of uniform material (approx. water)
- Contains 5 uniform ROIs
- Mean pixel value of each ROI is recorded using XVI software
- Percentage difference of max and min is calculated
- Tolerance is 2%

CTP₄86 Module

• 3D kV Low Contrast Visibility

- Module made of several inserts of varying electron densities
- Mean pixel value and standard deviation of Polystyrene and LDPE inserts are recorded using XVI software

$$\frac{(CT_{polystyrene} - CT_{LDPE})/10}{\left\{\frac{(Mean_{polystyrene} - Mean_{LDPE})}{(SD_{polystyrene} + SD_{LDPE})/2}\right\}}$$

CTP404 Module

• Tolerance is $\leq 1.5\%$

• 3D kV Spatial Resolution

- 1 through 21 lp/cm
- Highest number lp/cm that can be seen is recorded
- Tolerance is \geq 10 lp/cm

- 3D kV Transverse Scale
 - The distance between 2 sets of inserts is measured
 - Tolerance is ± 1mm

• 3D kV Sagittal Geometry

- The distance between 2 alignment markers is recorded
- Tolerance is ± 1mm

• 2D kV Imaging

- Low contrast visibility
- Spatial resolution

TOR 18FG Leeds Phantom

• 2D kV Imaging

- Low contrast visibility
 - Count number of disks visible
 - A minimum of 12 disks must be seen
- Spatial resolution
 - Count number of line pairs visible
 - Tolerance is \geq 1.4 lp/mm

TOR 18FG Leeds Phantom

• kV and MV Registration Accuracy

- Register CBCT to reference CT and apply shifts to ball-bearing phantom using vernier scale
- Acquire MV images at 4 cardinal angles each at o° and 180° collimator rotation
- XVI software calculates registration accuracy
- Tolerance is ≤ 1 mm

Ball-bearing phantom

• MV Image Quality

- Contrast-detail phantom
- Holes have varying thickness and diameter
- Certain specified holes are required to be discernable in image

Las Vegas phantom

Imaging QA Baselines

- Following acceptance, imaging baselines should be established using the methods that will be used for routine QA
- Our institution uses Mobius Medical Systems DoseLab with Sun Nuclear ImagePro phantoms
- Baselines include spatial resolution, contrast, CBCT HU constancy, uniformity and noise.

• kV CBCT

• CATPHAN 503 is used

• kV CBCT

• DoseLab software automatically analyzes the CT data set and compares results to tolerances and baselines

Results (All tests pass):

Scaling discrepancy: 0.0 mm Geometric distortion: 0.2 mm Spatial resolution (50% MTF): 0.27 lp/mm Overall uniformity: 98.1% Minimum uniformity: 99.0% (ROI 22) Contrast (ROIs 1 and 2): 9.9% CNR (ROIs 1 and 2): 17.9 Max HU deviation: 191 HU (ROI 8) Slice width: 1.18 mm (Off +0.18) mm

• MV Imaging

• Sun Nuclear MV-QA phantom is used

4 spatial resolution ROIs (0.1, 0.2, 0.5, 1.0 lp/mm)
4 contrast ROIs

• MV Imaging

• DoseLab software automatically analyzes the MV image and compares results to tolerances and baselines

Results (All tests pass):

Scaling discrepancy: 0.0 mm Spatial resolution (70% MTF): 0.25 lp/mm Minimum uniformity: 99.6% (ROI 1) Contrast (ROIs 3 and 5): 17.5% CNR (ROIs 3 and 5): 61.8

Imaging and treatment coordinate coincidence
 Sun Nuclear WL-QA phantom is used

- 6 x 6 x 6 cm³
- 8.0 mm metal sphere at the cube center

• Imaging and treatment coordinate coincidence

• A CBCT is acquired and registered to the reference CT to align the sphere with the kV isocenter

- Imaging and treatment coordinate coincidence
 - Once the sphere is at kV isocenter, four 2 x 2 MV images are collected
 - MV images are measured at the cardinal angles with opposing field collimation rotated 180° apart.

- Imaging and treatment coordinate coincidence
 - DoseLab software automatically analyzes the MV images and compares result to tolerance

- Leaf Position Accuracy
 - Picket fence field is used (created in iCom CAT)
 - 12 strips, 1 cm width, 22 cm height, 2 cm center to center, 21 MU per strip
 - Image collected on iViewGT MV panel.

Leaf Position Accuracy

• DoseLab software automatically analyzes the MV image and compares the results of each leaf to the tolerance

Leaves that failed: None Maximum difference: 0.28 mm Standard deviation: 0.10 mm

Leaf Position Accuracy

• DoseLab software automatically analyzes the MV image and compares the results of each leaf to the tolerance

- Recommendations for Elekta machines
 - Use a Gaussian fit instead of a Lorentzian fit
 - Ignore results near leaf junctions

- MLC Leaf Speed
 - Raw leaf positions vs time (seconds) are recorded in service graphing in service mode
 - Raw leaf positions can be converted to cm if leaf travel distance is known
 - At our institution, a single segment, low MU field (20MU) is delivered with all leaves traveling 25cm.

MLC Leaf Speed

Data acquisition steps

- Begin Acquire
- Beam on (MLCs move 25cm)
- End Acquire
- Save file as .xml
- Import file into Excel and calculate cm/s for each leaf

- MLC Leaf Speed
 - Excel results

Leaf	Baseline Speed (cm/s)	Meas. Speed (cm/s)	Abs. Diff. (cm/s)	TG-142 Tol. (cm/s)	Result
Y11	3.8	3.8	0.0	0.5	Pass
Y12	3.8	3.8	0.0	0.5	Pass
Y1 3	3.8	3.8	0.0	0.5	Pass
Y14	3.8	3.8	0.0	0.5	Pass
Y1 5	3.8	3.8	0.0	0.5	Pass
Y16	3.8	3.8	0.0	0.5	Pass
Y17	3.8	3.8	0.0	0.5	Pass
Y1 8	3.8	3.8	0.0	0.5	Pass
Y1 9	3.8	3.8	0.0	0.5	Pass
Y1 10	3.8	3.8	0.0	0.5	Pass

Patient-specific QA PTW OCTAVIUS II and OCTAVIUS 729 are used

• OCTAVIUS II

- Polystyrene (~water equiv.)
- 32 cm diameter
- OCTAVIUS 729
 - 729 vented ion chambers

- Patient-specific QA
 - OCTAVIUS 729 is suitable for dose rates up to 48 Gy/min or 0.8 Gy/s
 - Measuring range must be set to high for FFF in the data collection software

Acceptance Testing and Routine QA on an Elekta VersaHD

Thank You!

References

 "Ion-recombination correction for different ionization chambers in high dose rate flattening-filter-free photon beams", S. Lang, J. Hrbacek, A. Leong and S. Klock, Phys. Med. Biol. 57, 2819–2827 (2012)

2. "Modeling the instantaneous dose rate dependence of radiation diode detectors", J. Shi, W.E. Simon, T.C. Zhu, Med. Phys. 30 (9), 2509-2519 (2003)

3. "User's Guide, EDGE DetectorTM", Sun Nuclear Corporation., Document 1118011, Rev J-1, 1 July 2013