Knowledge that will change your world # Clinical considerations for MLC based Linac SRS of small targets Richard Popple ## Radiosurgery tools Knowledge that will change your world #### 16 mets, Rx = 18 Gy, GTVtotal = 2cc Yamamoto, Masaaki, et al. "Gamma Knife radiosurgery for numerous brain metastases: is this a safe treatment?." *International Journal of Radiation Oncology* Biology* Physics* 53.5 (2002): 1279-1283. #### TrueBeam SRS - evolution of target size #### Small field dosimetry Francescon et al. Medical Physics, Vol. 38, No. 12, December 2011 #### Small field dosimetry Output for square fields measured using EDR2 and calculated using AAA. Difference between calculation and measurement is given in parentheses. | | 6 M' | √ FFF | 10 MV FFF | | | |------------|-------|------------------|-----------|------------------|--| | Field (cm) | EDR2 | AAA | EDR2 | AAA | | | 3 | 0.629 | 0.623
(-0.9%) | 0.718 | 0.721
(0.4%) | | | 2 | 0.587 | 0.595
(1.4%) | 0.670 | 0.679
(1.4%) | | | 1 | 0.486 | 0.529
(8.9%) | 0.519 | 0.562
(8.2%) | | | 0.5 | 0.289 | 0.415
(43.7%) | 0.305 | 0.398
(30.6%) | | #### Small field dosimetry Output for square MLC fields measured using EDR2 and calculated using AAA. Difference between calculation and measurement is given in parentheses. | _ | | 6 MV FFF | | 10 MV FFF | | |-------------------|----------------|----------|------------------|-----------|------------------| | MLC Field
(cm) | Jaw field (cm) | EDR2 | AAA | EDR2 | AAA | | 1 | 10 x 10 | 0.523 | 0.535
(2.3%) | 0.569 | 0.569
(-0.1%) | | 1 | 2.6 x 1.4 | 0.521 | 0.524
(0.6%) | 0.560 | 0.560
(-0.0%) | | 0.5 | 10 x 10 | 0.385 | 0.379
(-1.6%) | 0.403 | 0.374
(-7.3%) | | 0.5 | 2.1 x 0.9 | 0.377 | 0.370
(-2.0%) | 0.390 | 0.366
(-6.0%) | # Planning system calculation accuracy for multiple small targets # Multi-target single isocenter patient specific QA #### Multi-target single isocenter patient specific QA #### 8 Target case – largest target (0.83 cm³) #### 8 Target case – smallest target (0.02 cm³) #### Solution: IGDQA ## Film calibration using step wedge #### Does IGDQA improve alignment? - IGDQA phantom: Mean offset magnitude = 0.43 mm (0.13 to 0.64) - Previous experience: Mean offset magnitude = 0.96 mm (0.13 to 2.36) #### **Evaluation** #### **Evaluation** #### Analysis Using green color channel. Film data is normalized to the TPS mean dose in the region > 90% (2159.2 cGy). Film normalization factor: 0.958 Additional registration shift: x = -0.32 mm, y = 0.16 mm (magnitude = 0.36 mm) Dose at (0.0,0.0): TPS = 2271.54 cGy; Film = 2269.14 cGy Fraction of calculation points in ROI exceeding gamma = 1 for 3% (72.0 cGy)/1 mm: 0.0% (0/6474) ROI is defined as the region within 17.5 mm for which the TPS dose exceeds 20% (479.8 cGy). Table 2. Comparison of the various volume-based conformity indices in various clinical settings | Treatment plan | Parameters | V _{RI}
TV
RTOG | TV _{RI}
TV
SALT-Lomax
(28,32) | TV _{RI}
V _{RI}
Lomax
(32) | TV _{RI} x TV _{RI}
TV x V _{RI}
Van't Riet
(33) | |---|---|-------------------------------|---|--|---| | | $TV = 5 \text{ cm}^3 *$ $V_{RI} = 10 \text{ cm}^3 \$$ $TV_{RI} = 5 \text{ cm}^3 \$$ | 2 | 1 | 0.50 | 0.50 | | | $TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$ | 0.60 | 0.60 | 1 | 0.60 | | \$ | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$ | 1 | 0.80 | 0.80 | 0.64 | | (| $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$ | 1 | 0.50 | 0.50 | 0.25 | | S | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$ | 1 | 0 | 0 | 0 | | Image: Control of the | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$ | 1 | 1 | 1 | 1 | Table 2. Comparison of the various volume-based conformity indices in various clinical settings | Treatment plan | Parameters | V _{RI}
TV
RTOG
(1) | TV _{RI}
TV
SALT-Lomax
(28,32) | TV _{RI}
V _{RI}
Lomax
(32) | TV _{RI} x TV _{RI}
TV x V _{RI}
Van't Riet
(33) | |----------------|---|--------------------------------------|---|--|---| | | $TV = 5 \text{ cm}^3 *$ $V_{RI} = 10 \text{ cm}^3 \$$ $TV_{RI} = 5 \text{ cm}^3 \$$ | 2 | 1 | 0.50 | 0.50 | | | $TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$ | 0.60 | 0.60 | 1 | 0.60 | | 8 | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$ | 1 | 0.80 | 0.80 | 0.64 | | \$ | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$ | 1 | 0.50 | 0.50 | 0.25 | | d | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$ | 1 | 0 | 0 | 0 | | \(\) | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$ | 1 | 1 | 1 | 1 | Table 2. Comparison of the various volume-based conformity indices in various clinical settings | Treatment plan | Parameters | V _{RI}
TV
RTOG
(1) | TV _{RI}
TV
SALT-Lomax
(28,32) | TV _{RI}
V _{RI}
Lomax
(32) | TV _{RI} x TV _{RI}
TV x V _{RI}
Van't Riet
(33) | |----------------|---|--------------------------------------|---|--|---| | | $TV = 5 \text{ cm}^3 *$ $V_{RI} = 10 \text{ cm}^3 \$$ $TV_{RI} = 5 \text{ cm}^3 \$$ | 2 | 1 | 0.50 | 0.50 | | | $TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$ | 0.60 | 0.60 | 1 | 0.60 | | 8 | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$ | 1 | 0.80 | 0.80 | 0.64 | | \$ | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$ | 1 | 0.50 | 0.50 | 0.25 | | d | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$ | 1 | 0 | 0 | 0 | | \(\) | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$ | 1 | 1 | 1 | 1 | Table 2. Comparison of the various volume-based conformity indices in various clinical settings | Treatment plan | Parameters | V _{RI}
TV
RTOG | TV _{RI}
TV
SALT-Lomax
(28,32) | $\frac{TV_{RI}}{V_{RI}}$ Lomax (32) | TV _{RI} x TV _{RI}
TV x V _{RI}
Van't Riet
(33) | |----------------|---|-------------------------------|---|-------------------------------------|---| | | $TV = 5 \text{ cm}^{3}$ *
$V_{RI} = 10 \text{ cm}^{3}$ §
$TV_{RI} = 5 \text{ cm}^{3}$ ¶ | 2 | 1 | 0.50 | 0.50 | | | $TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$ | 0.60 | 0.60 | 1 | 0.60 | | \(\) | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$ | 1 | 0.80 | 0.80 | 0.64 | | (| $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$ | 1 | 0.50 | 0.50 | 0.25 | | 6 | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$ | 1 | 0 | 0 | 0 | | Ó | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$ | 1 | 1 | 1 | 1 | Table 2. Comparison of the various volume-based conformity indices in various clinical settings | Treatment plan | Parameters | V _{RI}
TV
RTOG | TV _{RI}
TV
SALT-Lomax
(28,32) | TV _{RI}
V _{RI}
Lomax
(32) | TV _{RI} x TV _{RI}
TV x V _{RI}
Van't Riet
(33) | |----------------|---|-------------------------------|---|--|---| | | $TV = 5 \text{ cm}^3 \star$ $V_{RI} = 10 \text{ cm}^3 \S$ $TV_{RI} = 5 \text{ cm}^3 \P$ | 2 | 1 | 0.50 | 0.50 | | Ó | $TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$ | 0.60 | 0.60 | 1 | 0.60 | | 8 | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$ | 1 | 0.80 | 0.80 | 0.64 | | & | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$ | 1 | 0.50 | 0.50 | 0.25 | | 6 3 | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$ | 1 | 0 | 0 | 0 | | \delta | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$ | 1 | 1 | 1 | 1 | Table 2. Comparison of the various volume-based conformity indices in various clinical settings | Treatment plan | Parameters | V _{RI}
TV
RTOG | TV _{RI}
TV
SALT-Lomax | $\frac{\text{TV}_{\text{RI}}}{\text{V}_{\text{RI}}}$ Lomax | TV _{RI} x TV _{RI} TV x V _{RI} Van't Riet | |----------------|--|-------------------------------|--------------------------------------|--|---| | (b) | $TV = 5 \text{ cm}^{3}*$ $V_{RI} = 10 \text{ cm}^{3} \S$ $TV_{RI} = 5 \text{ cm}^{3} \P$ | 2 | (28,32) | 0.50 | 0.50 | | | $TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$ | 0.60 | 0.60 | 1 | 0.60 | | 8 | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$ | 1 | 0.80 | 0.80 | 0.64 | | & | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$ | 1 | 0.50 | 0.50 | 0.25 | | d | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$ | 1 | 0 | 0 | 0 | | \(\) | $TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$ | 1 | 1 | 1 | 1 | #### Conclusion - Quality assurance for small targets is challenging but doable. - Need to use film with careful calibration. - Use a chamber whenever possible use to cross check film. - Patient specific geometric QA can be achieved using IGDQA. - Which evaluation metrics are most useful for small target QA is still an open question. # Questions?