

Knowledge that will change your world

Clinical considerations for MLC based Linac SRS of small targets

Richard Popple

Radiosurgery tools

Knowledge that will change your world

16 mets, Rx = 18 Gy, GTVtotal = 2cc

Yamamoto, Masaaki, et al. "Gamma Knife radiosurgery for numerous brain metastases: is this a safe treatment?." *International Journal of Radiation Oncology* Biology* Physics* 53.5 (2002): 1279-1283.

TrueBeam SRS - evolution of target size

Small field dosimetry

Francescon et al. Medical Physics, Vol. 38, No. 12, December 2011

Small field dosimetry

Output for square fields measured using EDR2 and calculated using AAA. Difference between calculation and measurement is given in parentheses.

	6 M'	√ FFF	10 MV FFF		
Field (cm)	EDR2	AAA	EDR2	AAA	
3	0.629	0.623 (-0.9%)	0.718	0.721 (0.4%)	
2	0.587	0.595 (1.4%)	0.670	0.679 (1.4%)	
1	0.486	0.529 (8.9%)	0.519	0.562 (8.2%)	
0.5	0.289	0.415 (43.7%)	0.305	0.398 (30.6%)	

Small field dosimetry

Output for square MLC fields measured using EDR2 and calculated using AAA. Difference between calculation and measurement is given in parentheses.

_		6 MV FFF		10 MV FFF	
MLC Field (cm)	Jaw field (cm)	EDR2	AAA	EDR2	AAA
1	10 x 10	0.523	0.535 (2.3%)	0.569	0.569 (-0.1%)
1	2.6 x 1.4	0.521	0.524 (0.6%)	0.560	0.560 (-0.0%)
0.5	10 x 10	0.385	0.379 (-1.6%)	0.403	0.374 (-7.3%)
0.5	2.1 x 0.9	0.377	0.370 (-2.0%)	0.390	0.366 (-6.0%)

Planning system calculation accuracy for multiple small targets

Multi-target single isocenter patient specific QA

Multi-target single isocenter patient specific QA

8 Target case – largest target (0.83 cm³)

8 Target case – smallest target (0.02 cm³)

Solution: IGDQA

Film calibration using step wedge

Does IGDQA improve alignment?

- IGDQA phantom: Mean offset magnitude = 0.43 mm (0.13 to 0.64)
- Previous experience: Mean offset magnitude = 0.96 mm (0.13 to 2.36)

Evaluation

Evaluation

Analysis

Using green color channel.

Film data is normalized to the TPS mean dose in the region > 90% (2159.2 cGy).

Film normalization factor: 0.958

Additional registration shift: x = -0.32 mm, y = 0.16 mm (magnitude = 0.36 mm)

Dose at (0.0,0.0): TPS = 2271.54 cGy; Film = 2269.14 cGy

Fraction of calculation points in ROI exceeding gamma = 1 for 3% (72.0 cGy)/1 mm: 0.0% (0/6474)

ROI is defined as the region within 17.5 mm for which the TPS dose exceeds 20% (479.8 cGy).

Table 2. Comparison of the various volume-based conformity indices in various clinical settings

Treatment plan	Parameters	V _{RI} TV RTOG	TV _{RI} TV SALT-Lomax (28,32)	TV _{RI} V _{RI} Lomax (32)	TV _{RI} x TV _{RI} TV x V _{RI} Van't Riet (33)
	$TV = 5 \text{ cm}^3 *$ $V_{RI} = 10 \text{ cm}^3 \$$ $TV_{RI} = 5 \text{ cm}^3 \$$	2	1	0.50	0.50
	$TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$	0.60	0.60	1	0.60
\$	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$	1	0.80	0.80	0.64
($TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$	1	0.50	0.50	0.25
S	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$	1	0	0	0
Image: Control of the	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$	1	1	1	1

Table 2. Comparison of the various volume-based conformity indices in various clinical settings

Treatment plan	Parameters	V _{RI} TV RTOG (1)	TV _{RI} TV SALT-Lomax (28,32)	TV _{RI} V _{RI} Lomax (32)	TV _{RI} x TV _{RI} TV x V _{RI} Van't Riet (33)
	$TV = 5 \text{ cm}^3 *$ $V_{RI} = 10 \text{ cm}^3 \$$ $TV_{RI} = 5 \text{ cm}^3 \$$	2	1	0.50	0.50
	$TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$	0.60	0.60	1	0.60
8	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$	1	0.80	0.80	0.64
\$	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$	1	0.50	0.50	0.25
d	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$	1	0	0	0
\(\)	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$	1	1	1	1

Table 2. Comparison of the various volume-based conformity indices in various clinical settings

Treatment plan	Parameters	V _{RI} TV RTOG (1)	TV _{RI} TV SALT-Lomax (28,32)	TV _{RI} V _{RI} Lomax (32)	TV _{RI} x TV _{RI} TV x V _{RI} Van't Riet (33)
	$TV = 5 \text{ cm}^3 *$ $V_{RI} = 10 \text{ cm}^3 \$$ $TV_{RI} = 5 \text{ cm}^3 \$$	2	1	0.50	0.50
	$TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$	0.60	0.60	1	0.60
8	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$	1	0.80	0.80	0.64
\$	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$	1	0.50	0.50	0.25
d	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$	1	0	0	0
\(\)	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$	1	1	1	1

Table 2. Comparison of the various volume-based conformity indices in various clinical settings

Treatment plan	Parameters	V _{RI} TV RTOG	TV _{RI} TV SALT-Lomax (28,32)	$\frac{TV_{RI}}{V_{RI}}$ Lomax (32)	TV _{RI} x TV _{RI} TV x V _{RI} Van't Riet (33)
	$TV = 5 \text{ cm}^{3}$ * $V_{RI} = 10 \text{ cm}^{3}$ § $TV_{RI} = 5 \text{ cm}^{3}$ ¶	2	1	0.50	0.50
	$TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$	0.60	0.60	1	0.60
\(\)	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$	1	0.80	0.80	0.64
($TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$	1	0.50	0.50	0.25
6	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$	1	0	0	0
Ó	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$	1	1	1	1

Table 2. Comparison of the various volume-based conformity indices in various clinical settings

Treatment plan	Parameters	V _{RI} TV RTOG	TV _{RI} TV SALT-Lomax (28,32)	TV _{RI} V _{RI} Lomax (32)	TV _{RI} x TV _{RI} TV x V _{RI} Van't Riet (33)
	$TV = 5 \text{ cm}^3 \star$ $V_{RI} = 10 \text{ cm}^3 \S$ $TV_{RI} = 5 \text{ cm}^3 \P$	2	1	0.50	0.50
Ó	$TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$	0.60	0.60	1	0.60
8	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$	1	0.80	0.80	0.64
&	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$	1	0.50	0.50	0.25
6 3	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$	1	0	0	0
\delta	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$	1	1	1	1

Table 2. Comparison of the various volume-based conformity indices in various clinical settings

Treatment plan	Parameters	V _{RI} TV RTOG	TV _{RI} TV SALT-Lomax	$\frac{\text{TV}_{\text{RI}}}{\text{V}_{\text{RI}}}$ Lomax	TV _{RI} x TV _{RI} TV x V _{RI} Van't Riet
(b)	$TV = 5 \text{ cm}^{3}*$ $V_{RI} = 10 \text{ cm}^{3} \S$ $TV_{RI} = 5 \text{ cm}^{3} \P$	2	(28,32)	0.50	0.50
	$TV = 5 \text{ cm}^3$ $V_{RI} = 3 \text{ cm}^3$ $TV_{RI} = 3 \text{ cm}^3$	0.60	0.60	1	0.60
8	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 4 \text{ cm}^3$	1	0.80	0.80	0.64
&	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 2.5 \text{ cm}^3$	1	0.50	0.50	0.25
d	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 0 \text{ cm}^3$	1	0	0	0
\(\)	$TV = 5 \text{ cm}^3$ $V_{RI} = 5 \text{ cm}^3$ $TV_{RI} = 5 \text{ cm}^3$	1	1	1	1

Conclusion

- Quality assurance for small targets is challenging but doable.
- Need to use film with careful calibration.
- Use a chamber whenever possible use to cross check film.
- Patient specific geometric QA can be achieved using IGDQA.
- Which evaluation metrics are most useful for small target QA is still an open question.

Questions?

