

Knowledge that will change your world

Acceptance testing, commissioning and routine QA of the Varian TrueBeam Richard Popple

Disclosure

- UAB has Varian research contracts
- Honorarium from Varian

Not your father's Chevy...

Not your father's Chevy...

Not your father's Chevy...

Not your father's Chevy Linac...

TrueBeam – distinquishing characteristics

- Completely digital control system
- Waveguide and filter design allows 5 flattened photon energies up to 20 MV.
- Electron scattering foils are of a new design.
- Implements 6 MV and 10 MV flattening filter free (FFF) beams that provide dose rates up to 2400 monitor units per minute.

Possible Benefits of a FFF

- Efficiency
- More accurate beam modeling due to decreased head scatter
- Decreased leakage and dose outside field

The study showed that removing the filter increased the dose rate on the central axis by a factor of 2.31 (6 MV) and 5.45 (18 MV) at a given target current. Because the flattening filter is a major source of head scatter photons, its removal from the beam line could reduce the out-of-field dose.

Vassiliev ON, Titt U, Kry SF, Pönisch F, Gillin MT, Mohan R Med Physics 2006 vol. 33 (4) pp. 820-7

Unflattened Beam Has a Lower Risk of Secondary Tumors

Cashmore J, Int J Radiat Oncol Biol Phys. 2011

Beam Profile – Flattening Filter

Depth Dose with Flattened Beam

Figure 1. Depth dose dependence for a 10×10 cm² field. 6 MV with the flattening filter (dashed line), 6 MV without the filter (solid line), 4 MV with the filter (circles).

2004 Phys. Med. Biol. 49 1535

Calibration

- No difference for FFF
- Polarity and recombination corrections small

Energy	Dose rate	Ppol	Pion
6X	600	1.000	1.004
15X	600	1.000	1.005
6X FFF	1400	1.000	1.006
10X FFF	2400	1.000	1.013

Calibration

1/V (V⁻¹) Kry SF, Popple R, Molineu A, Followill DS. Ion recombination correction factors (P(ion)) for Varian TrueBeam high-doserate therapy beams. J Appl Clin Med Phys. 2012 Nov 8;13(6):3803. doi: 10.1120/jacmp.v13i6.3803. PubMed PMID: 23149774.

Calibration

TABLE 5. Recombination factors at 300 V based on the two-voltage technique (P_{ion}), and based on a Jaffé-plot (1/V versus 1/Q curve).

	6 N	MVFFF	101	<i>10 MV FFF</i>		
Ion Chamber	P_{ion}	Jaffé-plot	P_{ion}	Jaffé-plot		
Exradin A-12	1.009	1.009	1.014	1.017		
PTW TN30013	1.008	1.008	1.013	1.015		
NEL 2571	1.013	1.011	1.018	1.020		

Kry SF, Popple R, Molineu A, Followill DS. Ion recombination correction factors (P(ion)) for Varian TrueBeam high-dose-rate therapy beams. J Appl Clin Med Phys. 2012 Nov 8;13(6):3803. doi: 10.1120/jacmp.v13i6.3803. PubMed PMID: 23149774.

Calibration – use Pb foil for <u>all</u> FFF beams

Calibration sanity check

IROC Calibration check

- RPC OSLD measurement / Institution
 - 6X FFF = 0.99
 - 10X FFF = 0.99

Profile and depth dose correction for recombination

Measured x-ray distributions of 6FFF and 15FFF beams plotted against charged collected per beam pulse. Also plotted are the results from applying corrections for the ion chamber collection efficiency. The distributions were measured at 100 cm SSD with the 0.1 cm³ chamber at D_{max} and biased with 300 V.

S Johnsen "Ion Chamber Collection Efficiency Considerations for Un-Flattened X-Ray Beams," Med. Phys. 35, 2770 (2008)

Profile and depth dose correction for recombination

S Johnsen "Ion Chamber Collection Efficiency Considerations for Un-Flattened X-Ray Beams," Med. Phys. 35, 2770 (2008)

FFF head scatter

LIGES THE UNIVERSITY OF ALABAMA AT BIRMINGHAM Knowledge that will change your world

FFF surface dose

Vassiliev et al. Phys Med Biol 2006

Photon commissioning

- AAA Data requirements are the same
- No additional data required for FFF

10X FFF profile

IROC VMAT Spine

Location	Institution Reported Doses (cGy)	TLD Dose (cGy)	Measured/Institution	
PTV TLD sup ant	612	618	1.01	
PTV TLD inf ant	614	619	1.01	
PTV TLD sup post	616	619	1.00	
PTV TLD inf post	620	627	1.01	
HEART TLD	134	135	1.01	

IROC Gated VMAT Lung

Summary of TLD and film results:

-	Location	RPC vs. Inst.	Criteria	Acceptable
	PTV TLD sup	0.96	0.92 - 1.02	Yes
	PTV TLD inf	0.96	0.92 - 1.02	Yes

Film Plane	Gamma Index*	Criteria	Acceptable
Axial	100	≥ 80%	Yes
Coronal	99	≥ 80%	Yes
Sagittal	98	≥ 80%	Yes
Average over 3 planes	99	≥ 85%	Yes

*Percentage of points meeting gamma-index criteria of 5% and 5 mm

LAB THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

IMRT QA results

IMRT QA results

Daily QA device

Varian engineer fixing UAB TrueBeam

Machine performance check

Machine Change Mode Performance Check	Richard Pop 1005 1:32 PM We	pple, Physicis dnesday, Ap	it pril 22, 2015				1			VARIAN medical systems	
6xFFF Beam Check)					A	T			
10xFFF Beam Check						7	1				
15x Beam Check						-		H			
6x Beam & Geometry Check						A Do not us	se for Tre	atment			
					Fix phantom to	couch, then press	s Prepare to	o apply beam pa	rameters.		
		Previe	W		Prepa	re		Ready	/	Beam-on	
	Beam			Couch			Gantr	y			
		Plan	Delivered		Plan	Actual		Plan	Actual		
	Energy	1	None	Vrt	-16.57	-53.11	Rtn	+36	0.0		
	MU1	3	51.0	Lng	+25.00	+29.64	с II.				
	MU2	3	351.2	Lat	-0.06	-0.07	Collin	Dian	Antoni		
	Imaging			Rtn	0.0	0.0	Pto	+ 270.0			
	inaging	MV Dotoct	or	Pitch	0.0	+0.1		+270.0	0.0		
		kV Detect		Roll	0.0	+360.0	V2	-9.	0		
		kV Source	≠ 				X1	-9	0		
		KV SUUICE	#				X2	+9	.0		
Tools Create Report	Couch Rep	presentation: I	socentric Standard, D	isplay Scale	: IEC 61217 (Units	shown are centimet	ters, degrees	; or MU.)			

Machine performance check

MPC History

Show Repeated Checks 😽 Hide F

6x Beam & Geometry Check, Saturday, March 14, 2015, 12:54 PM (Baseline

Beam Delivery 🖌 Proc	essing 🖌		MV Gantry 0 °	/ Q Q 🖍 👔	🍯 🕵 🛷 🏪		
	Value	Thresholds	Collimator +270 °				
▲ Isocenter	✓						
Size	+0.44 mm 🗹	± 0.50 mm					
MV Imager Projection Offset	+0.23 mm 🖌	± 0.50 mm					
KV Imager Projection Offset	+0.25 mm 🖌	± 0.50 mm	MV				
▲ Beam	 ✓ 		Gantry 0 ° Collimator +305 °				
Output Change	+0.17 % 🖌	± 2.00 %	- MILL				
Uniformity Change	+0.79 % 🖌	± 2.00 %	Million .				
Center Shift	+0.12 mm 🖌	± 0.50 mm	munut				
 Collimation 	 ✓ 						
▷ MLC	✓		Gantry 0 °				
Jaws	 ✓ 		Collimator +360 °				
Rotation Offset	-0.12 ° 🖌	± 0.50 °					
▲ Gantry	 ✓ 						
Absolute	-0.03 ° 🖌	± 0.30 °					
Relative	-0.11 ° 🖌	± 0.30 °	MV				
 Couch 	✓		Gantry 0 ° Collimator +45 °				
Lateral	-0.27 mm 🖌	± 0.70 mm	1100				
Longitudinal	-0.15 mm 🖌	± 0.70 mm	in ann				
Vertical	-0.27 mm 🖌	± 1.20 mm					
Rotation	-0.09 ° 🖌	± 0.40 °					
Pitch	+0.01° 🖌	± 0.10 °	Gantry 0 °				
Roll	+0.01 ° 🖌	± 0.10 °	Collimator +90 °				
Rotation-Induced Couch Shift	+0.31 mm 🖌	± 0.75 mm					
Display Scale: IEC 61217 (Units shown are millimeters or degree	25.)						
Notes		ð	MV Gantry 0 °	en Oùe			
After MVD arm repair, All test passed.			Collimator +270 °				

AAPM TG-142

TABLE VI. Imaging.

	Application-ty	pe tolerance
Procedure	non-SRS/SBRT	SRS/SBRT
	Daily ^a	
Planar kV and MV (EPID) imaging		
Collision interlocks	Functional	Functional
Positioning/repositioning	≤2 mm	≤1 mm
Imaging and treatment coordinate coincidence (single gantry angle)	≤2 mm	≤1 mm
Cone-beam CT (kV and MV)		
Collision interlocks	Functional	Functional
Imaging and treatment coordinate coincidence	≤2 mm	≤1 mm
Positioning/repositioning	$\leq 1 \text{ mm}$	≤1 mm

Orthogonal kV images

Orthogonal kV images

Cone beam CT

Cone beam CT

MV image

MV image

MV image

LABAMA AT BIRMINGHAM

Difference between automatic and manual AP view

Automated QA Consortium

Jeremy Booth & Mario Perez

Hania Al-Hallaq & Karl Farrey

UC San Diego Moores Cancer Center

Todd Pawlicki & Grace Kim

Courtesy Jean Moran

Toby Eckhause, Don Roberts, Brett Schultz & Jean Moran

Veterans Affairs Veterans Health Administration

Tim Ritter

Richard Popple

Vijeshwar Sharma & Sung Park

UCLA Health

Phase 1 QA Test Suite

Standardize tests and QA test suite so to evaluate the performance of TrueBeam linacs and compare our results across multiple institutions

Use both trajectory log files and EPID measurements

Courtesy Jean Moran

Example Fields of QA Test Suite

Field Description	Test Image	TG-142 Table (Klein et al ^s)	Procedure(s) Tested	EPID Analysis	Log File Analysis
1.Jaw-defined field*		Table II (monthly)	Gantry sag; collimator rotation; Jaw position	Field edge, angle; phantom position	Jaw and collimator
2.MLC defined static pattern*	\mathbf{i}	Table V (monthly)	Leaf positions	Leaf edge positions	Leaf position
3.Interleaf static MLC pattern*		Table V (annual)	MLC transmission	Image-to-image- comparison	Leaf position
4.Picket-fence test – static gantry*		Table V static gantry Quantitative (monthly)	Leaf position (IMRT)	Leaf positions for all pickets, cardinal gantry angles	Leaf position, velocity

+ picket fence for VMAT with variable gantry speed,
variable gantry speed and dose rate
Both HDMLC and Millennium MLC supported

Courtesy Jean Moran

Automated QA Analysis

- Software analysis developed in MatLab primarily developed by Toby Eckhause (former post-doc)
- Test suite takes ~15 minutes to deliver; 1 flood field + enter room once to setup phantom
- All analysis from the original test suite is automated and results can be exported
- Less than a minute to analyze all data

Trajectory Log File & EPID Analysis

Test suite included all MLC monthly tests in Table V of TG 142, VMAT tests, plus imaging tests.

Analysis of Trajectory Log Files

Maximum difference for leaf position accuracy From Phase 1 of our project with 8 linacs measured over 6 months

Courtesy Jean Moran

