Clinical Implementation and Commissioning of Deformable Registration for Treatment Planning

Kristy K Brock, Ph.D., DABR

Associate Professor

Department of Radiation Oncology, University of Michigan

Chair, AAPM TG 132: Image Registration and Fusion

Disclosure

- Personal: RaySearch Licensing Agreement
- UM: Research and Development Agreement with Varian Medical Systems
- Chair, AAPM TG 132 Image Registration and Fusion

Learning Objectives

- 1. Highlight the importance of understanding the image registration techniques used in their clinic.
- 2. Describe the end-to-end tests needed for standalone registration systems.
- 3. Illustrate a comprehensive commissioning program using both phantom data and clinical images.
- 4. Describe a request and report system to ensure communication and documentation.
- 5. Demonstrate an clinically-efficient patient QA practice for efficient evaluation of image registration.

Clinical Recommendations (1/2)

- 1. Understand the basic image registration techniques and methods of visualizing image fusion
- 2. Understand the basic components of the registration algorithm used clinically to ensure its proper use
- 3. Perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a standalone system

Clinical Recommendations (2/2)

- 4. Perform comprehensive commissioning of image registration using the provided digital phantom data (or similar data) as well as clinical data from the user's institution
 - 1. Estimation of registration error should be assessed using a combination of the quantitative and qualitative evaluation tools. Estimated errors in the area of the relevant anatomy exceeding 1-2 voxels should be accounted for in the uncertainty margins used.
- Develop a request and report system to ensure communication and documentation between all users of image registration
- 6. Establish a patient specific QA practice for efficient evaluation of image registration results

1. Understand the basic image registration techniques and methods of visualizing image fusion

How?

- TG report has basic information and references
- AAPM Virtual Library
- Several books and review papers

Why? Many Image Registration Techniques

Mutual Information

Maximise the mutual information

 Sensitivity of results: Vary the vector field and evaluate the change in similarity metric

 Hub, et. al., IEEE TMI 2009

How Reliable is the Max MI?

• Actually, min -MI

Intensity Variation: Impact on CC/MSD

Clear intensity variation

No relevant intensity variation, noise/artifact

New method to validate Deformable Image Registration

Deformable 3D Presage dosimeters

Control (No Deformation)

Deformed (27% Lateral Compression)

Slides Courtesy of Mark Oldham and Shiva Das

Dosimeter & Deformable Registration-based Dose Accumulation: Dose Distributions

Field Shape Differences

DVF-based

Caution must be used when accumulating dose, especially in regions of the image with homogeneous intensity.

Horizontal (Compression Axis) \rightarrow 40% narrower to 175% wider

Vertical \rightarrow 33% shorter to 50% taller

Slides Courtesy of Mark Oldham and Shiva Das

De

Different DIR Algorithms have Different Strengths and Weaknesses

Juang. IJROBP 2013;87(2): 414-421
 M Velec, et al, PRO, 2015

2. Understand the basic components of the registration algorithm used clinically to ensure its proper use

How?

- At minimum, the vendor should disclose:
 - Similarity metric used
 - Regularization used
 - Transformation used
 - Optimization method
 - What knobs you can turn and what they do
- Read white papers
- Know that implementation matters

Why do we need to know the implementation?

Objective assessment of deformable image registration in radiotherapy: A multi-institution study

Rojano Kashani^{a)}

Med Phys 2008

Department of Radiation Oncology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109-0010

TABLE I. Summary of registration methods and references.

TABLE II. Maximum component errors in RL, AP, and SI directions, as well as the mean, standard deviation, and

3. Perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a stand-alone system

 Perform comprehensive commissioning of image registration using the provided digital phantom data (or similar data) as well as clinical data from the user's institution

Why? Commissioning is Important!

- LINAC
 - Know how it works

Why is this particularly challenging for deformable registration?

- Algorithms typically don't rely on fundamental physics related to the human anatomy/physiology
 - Deformable Registration Algorithm
 - Find out how it works!
 - Accept and Commission the software
 - Perform an end-to-end test in your clinic

How do we do it?

• What tools do we have?

Visual Verification Excellent tool for established techniques Not enough for Commissioning

Quantitative Validation Techniques

- Landmark Based
 - Does the registration map a landmark on Image A to the correct position on Image B?
 - Target Registration Error (TRE)
- Contour Based
 - Does the registration map the contours onto the new image correctly?
 - Dice Similarity Coefficient (DSC)
 - Mean Distance to Agreement (MDA)
- Digital/Physical Phantoms

Compare known motion with registration results

Landmark Based (TRE)

- Reproducibility of point identification is sub-voxel
 - Gross errors
 - Quantification of local accuracy within the target
 - Increasing the number increases the overall volume quantification
- Manual technique
- Can identify max errors
- Average vector distance between the points identified on Image A mapped onto Image B via the registration and the points identified on Image B = TRE

That sounds great! Is that enough?

RMS = 0.3 mm

Points Don't Tell the Whole Story

Accuracy of Contours

Phantoms

Differents views of the lungs, spine and body contours of the NCAT phantom.

- NCAT Phantom
- U of Mich lung phantom (Kashani, Balter)
- McGill lung phantom (Serban)
- Can know the true motion of all points
- Doesn't include anatomical noise and variation, likely not as complex as true anatomical motion
- Does give a 'best case' scenario for similarity/ geometric defm reg algorithms

Commissioning and QA Understand the whole picture

Commissioning

- 1. Rigid Geometric Phantom Data
- 2. Rigid Anatomic Phantom
- 3. Deformable Anatomic Phantom
- 4. Combined Data (Clinical & Simulation)
- 5. Your Clinical Data

Why Virtual Phantoms

- Known attributes (volumes, offsets, deformations, etc.)
- Testing standardization we all are using the same data
- Geometric phantoms quantitative validation
- Anthropomorphic realistic and quantitative

Still need end-to-end physical images

Rigid Geometric Data

- Helps us to learn the impact of the 'knobs' of the registration
- Validation of most straightforward case
- Similar to 20x20 field profile

* Phantom Data Courtesy of ImSim QA

Example Commissioning Tests

KKB204 - Geometric Phantom Registration		Δ	P	51	[mn	n, degr	ees]
Offset to Primary	dx	d	ly	dz	rotx	roty	rotz
Defined		10	5	-15	0	0	0
default, entire FOV	-	10	5.1	-12.9	0.2	0	0
default, entire FOV	-9	9.9	4.5	-13.5	0	0	0
default, entire FOV	-	10	4.9	-14.1	0	0	0
default, entire FOV	-	10	5.2	-13.8	0	0	0
default, entire FOV	-8	3.3	4.4	-13.6	0	0	0
AVG	-9.	64	4.82	-13.58	0.04	0	0
SD	0.	75	0.36	0.44	0.09	0	0
AVG Deviation from Defined Offset	0.	36	-0.18	1.42	0.04	0	0
Offset to Primary	dx	d	iy	dz	rotx	roty	rotz
Defined	-	10	5	-15	0	0	0
User Defined (4th step with 1 mm resolution), entire FOV	-	10	5	-15	0	0	0
User Defined (4th step with 1 mm resolution), entire FOV	-	10	5	-15	0	0	0
User Defined (4th step with 1 mm resolution), entire FOV	-	10	4.9	-15	0	0	0
User Defined (4th step with 1 mm resolution), entire FOV	-	10	5	-15	0	0	0
User Defined (4th step with 1 mm resolution), entire FOV	-	10	5	-15	0	0	0
AVG	-	10	4.98		0	0	0
SD	0.	00	0.04	0.00	0.00	0.00	0.00
AVG Deviation from Defined Offset		0	-0.02	0	0	0	0

Rigid Anatomical Phantom

- Multi-Modality
- Translation Offset
- 1 additional (simple) layer of complexity

Reference

- EOV Adjustme Move FOV

MB Para Sequences TR (Rep. time TE (Echotime) DICOM Expr

DICOM Netwo

 Ω

🔀 Microsoft Excel - Inte... 🖉 Washington Universit.. 🛃 start 🥖 ڬ 📇

🚳 ImSimQA 3.0.75 🦉 simple phantom 3 - P.

Offset to Primary	dx	dy	dz	rotx	roty	rotz
Defined	-3	5	-12	0	0	0
User Defined (4th step with 1 mm resolution), entire FOV	-3	4.9	-12	0	0	0
User Defined (4th step with 1 mm resolution), entire FOV	-3	4.9	-12	0	0	0
User Defined (4th step with 1 mm resolution), entire FOV	-3	4.9	-12	0	0	0
AVG	-3	4.90	-12	0	0	0
SD	0.00	0.00	0.00	0.00	0.00	0.00
AVG Deviation from Defined Offset	0	-0.1	0	0	0	0
MP1 to Primary	dv	du	da	roty	roty	rotz
Defined	ux _3	uy 5	uz .12	101.	1019	1012
User Defined (4th step with 1 mm resolution), default EOV	-2.6	53	-11.5	0	Ő	0
User Defined (4th step with 1 mm resolution), default FOV	-2.6	5.3	-11.5	0	0	0
User Defined (4th step with 1 mm resolution), default FOV	-2.6	5.3	-11.5	0	ő	0
AVG	-2.6	5.30	-11.5	Ő	0	Ő
SD	0.00	0.00	0.00	0.00	0.00	0.00
AVG Deviation from Defined Offset	0.4	0.3	0.5	0	0	0
MR2 to Primary	dx	dy	dz	rotx	roty	rotz
Defined	-3	5	-12	0	0	0
User Defined (4th step with 1 mm resolution), default FOV	-2.5	5.6	-11.4	0	0	0
User Defined (4th step with 1 mm resolution), default FOV	-2.5	5.6	-11.4	0	0	0
User Defined (4th step with 1 mm resolution), default FOV	-2.5	5.6	-11.4	0	0	0
AVG	-2.5	5.60	-11.4	0	0	0
SD	0.00	0.00	0.00	0.00	0.00	0.00
AVG Deviation from Defined Offset	0.5	0.6	0.6	0	0	0
OPOT to Office	also.	also.	da.	na ku		
CBCT to Offset	ax	ay _	az 12	rotx	roty	rotz
Less Defined (4th step with 1 mm resolution) default EOV	20	-0	12.1	0	0	0
User Defined (4th step with 1 mm resolution), default FOV	2.9	-5.1	12.1	0	0	0
User Defined (4th step with 1 mm resolution), default FOV	2.3	-5.1	12.1	0	0	0
AVG	2.93	-5.10	12 10	0.00	0.00	0.00
SD	0.06	0.00	0.00	0.00	0.00	0.00
M/O Deviation from Defined Offeet	0.07	0.10	0.10	0.00	0.00	0.00

Deformable Phantom

- Run Deformable Image Registration
- Export DICOM Deformation Vector Field (DVF)
- Pseudo code provided to compare known DVF with exported DVF
- Target: 95% of voxels within 2 mm, max error less than 5 mm

PHANTOM:

Prostate with added Gaussian noise variation and the following global offsets: To left = 0.3 cm, to anterior = 0.5 cm, To inferior = 1.2 cm. 3 markers were set inside the prostate regions, prostate volume increased by105%, -10° about X-axis, +10° about Y-axis, +10° about Z-axis.

Target Tolerances for the Digital Phantom Test Cases

PHANTOM AND TEST	<u>TOLERANCE</u>
Basic geometric phantom registration	
Scale – Dataset 1	0.5 * voxel (mm)
Voxel value – Dataset 1	Exact
Registration – Datasets 2, 3, 4, 5, 6	0.5 * voxel (mm)
Contour propagation – Datasets 2, 3, 4, 5, 6	1 * voxel (mm)
Orientation – Datasets 2, 3, 4, 5, 6	Correct
Basic anatomical phantom registration	
Orientation - Datasets 1, 3, 4	Correct
Scale - Data sets 1, 3, 4	0.5 * voxel (mm)
Voxel value - Datasets 1, 2, 3, 4, 5	± 1 nominal value
Registration - Datasets 2, 3, 4, 5	0.5 * voxel (mm)
Contour propagation - Datasets 2, 3, 4, 5	1 * voxel (mm)
Basic deformation phantom registration	
Orientation - Dataset 2	Correct
Registration - Dataset 2	95% of voxels within 2 mm, max error less
	than 5 mm
Sliding deformation phantom registration	
Orientation - Dataset 2	Correct
Scale - Dataset 2	0.5 * voxel (mm)
Registration - Dataset 2	95% of voxels within 2 mm, max error less
	than 5 mm
Volume change deformation phantom registration	
Orientation - Dataset 2	Correct
Scale - Dataset 2	0.5 * voxel (mm)
Registration - Dataset 2	95% of voxels within 2 mm, max error less

than 5 mm

Standard Clinical Data

Deformable Lung

- Clinical Lung Data
- Simulated Deformed Lung

*Courtesy DIR-lab, Dr. Castillo

4DCT 8

Image Dims: 512 x 512 x 128 Voxels (mm): 0.97 x 0.97 x 2.5 Features (#): 476 Displacement (mm): 15.16 (9.11)Repeats (#/#): 150/3 Observers (mm): 1.03 (2.19)

Lowest Error (mm): Observer Uncertainty Threshold

Your Clinical Data!

DSC Evaluation on CT-CT DIR

Contour structures on both CT scans, propagate via DIR

Data from 4 Clinical Cases

HN1002_REDO	DSC	DSC	DSC	DSC	AVG DSC
ORAL_CAVITY1	0.78	0.85	0.89	0.89	0.85
SUBMAND_R1	0.67	0.97		0.82	0.82
CORD_PRV6	0.72	0.86		0.81	0.80
SUBMAND_L1	0.67		0.97	0.74	0.79
PAROTID_R1	0.76	0.84	0.74	0.76	0.77
BRAINSTEM1	0.74	0.89	0.81	0.58	0.76
LARYNX1	0.68		0.86	0.69	0.74
MANDIBLE1	0.80	0.68	0.67		0.71
PAROTID_L1	0.61	0.81	0.65	0.74	0.70
ESOPHAGUS1	0.71	0.62	0.73	0.71	0.69
CORD1	0.59	0.74	0.69	0.66	0.67
COCHLEA_L1	1.00	0.43	0.28	0.68	0.60
CONSTRICTOR_SUP1	0.29	0.85	0.52	0.65	0.58
LIPS1	0.60	0.54	0.67	0.37	0.54
CONSTRICTOR_INF1	0.13	0.50	0.42	0.60	0.41
COCHLEA_R1		0.18	0.34	0.06	0.19

Clinical Deformable Registration

Identified Implanted Markers in Each Image

Clinical Deformable Registration TRE, mm

	RIGID				DEFORMABLE			
	AVG	SD	Max	Min	AVG	SD	Max	Min
P2	7.0	2.7	12.0	3.8	3.6	3.2	8.9	0.5
P3, CBCT1	4.6	3.3	11.2	0.7	2.7	1.7	6.0	0.3
P3, CBCT10	4.1	2.2	8.3	0.9	3.0	1.8	8.1	0.7
P4, CBCT1	7.1	3.5	11.8	1.7	6.8	5.5	13.7	0.2
P4, CBCT4	4.5	1.7	7.4	2.5	6.7	5.8	14.7	0.3
P5	6.7	3.3	10.6	0.8	3.7	2.7	9.2	0.5
AVG	5.7	2.8	10.2	1.7	4.4	3.4	10.1	0.4

Validation Tests and Frequencies

<u>Frequency</u>	Quality Metric	<u>Tolerance</u>
Acceptance and	System end-to-end tests	Accurate
Commissioning	Data Transfer (including orientation,	
Annual or Upon	image size, and data integrity)	
opyraue	Using physics phantom	
	Rigid Registration Accuracy (Digital	Baseline, See details in
	Phantoms, subset)	Table Z
	Deformable Registration Accuracy (Digital Phantoms, subset)	Baseline, see details in Table Z
	Example patient case verification ((including orientation, image size, and data integrity)	Baseline, see details in Table Z
	Using real clinical case	

5. Develop a request and report system to ensure communication and documentation between all users of image registration

Why?

- To create clear information and communication
- To provide documentation in the patient chart
- To ensure safety

How?

Request

- Clear identification of the image set(s) to be registered
 - Identification of the primary (e.g. reference) image geometry
- An understanding of the local region(s) of importance
- The intended use of the result

 Target delineation
- Techniques to use (deformable or rigid)
- The accuracy required for the final use

Report

- Identify actual images used
- Indicate the accuracy of registration for local regions of importance and anatomical landmarks
 - Identify any critical inaccuracies to alert the user
- Verify acceptable tolerances for use
- Techniques used to perform registration
- Fused images in report with annotations
- Documentation from system used for fusion

Example Implementation

- Integrate with another document
 Included in the Simulation Directive
- Use drop-downs and check boxes
- Include visuals when helpful

Imaging and Registration	
Primary Imaging:	
CT ABC: Yes No	
Secondary Imaging: MRI Date: MRI sim from perfusion protocol	
Series: Images:	3
Registration Technique: 🖾 Rigid 🔲 Deformable	1. Dome & Mid-liver
Local Region of Importance: 3 (Hepatic Duct) Comments:	2.Left Lobe
Intended use of Registered Images:	3. Liver Hilum
Tumor Definition 🔲 Normal Tissue Definition	4.Inferior of liver
Treatment Adaptation	

6. Establish a patient specific QA practice for efficient evaluation of image registration results

Why?

 At this point we are still understanding how the the registration is performing on different types of patients

How?

- Visual Verification
- Spot checks of landmarks
- Boundary comparison

Challenge: Communicating the Uncertainty?

Uncertainty Assessment	Phrase	Description
0	Whole scan aligned	 Anatomy within 1 mm everywhere Useful for structure definition everywhere Ok for stereotactic localization
1	Locally aligned	 Anatomy local to the area of interest is un-distorted and aligned within 1mm Useful for structure definition within the local region Ok for localization provided target is in locally aligned region
2	Useable with risk of deformation	 Aligned locally, with mild anatomical variation Acceptable registration required deformation which risks altering anatomy Registered image shouldn't be used solely for target definition as target may be deformed Increased reliance on additional information is highly recommended Registered image information should be used in complimentary manner and no image should be used by itself
3	Useable for diagnosis only	 Registration not good enough to rely on geometric integrity Possible use to identify general location of lesion (e.g. PET hot spot)
4	Alignment not acceptable	 Unable to align anatomy to acceptable levels Patient position variation too great between scans (e.g. surgical resection of the anatomy of interest or dramatic weight change between scans)

Example: Multi-modality imaging for Planning

Liver: CT (No Contrast = No visible GTV)

Liver: MR (Visible GTV)

Uncertainty Level: 2 Difficult to assess local accuracy, boundaries appear to match in local region Deformation is clear

Vendor Recommendations

- 1. Disclose basic components of their registration algorithm to ensure its proper use
- 2. Provide the ability to export the registration matrix or deformation vector field for validation
- 3. Provide tools to qualitatively evaluate the image registration
- 4. Provide the ability to identify landmarks on 2 images and calculate the TRE from the registration
- 5. Provide the ability to calculate the DSC and MDA between the contours defined on an image and the contours mapped to the image via image registration
- 6. Provide the ability to compare a known deformation vector field with the deformation vector field calculated by the commercial algorithm
- 7. Support the integration of a request and report system for image registration

TG-132 Product Pending AAPM Approval

- Guidelines for understating of clinical tools
- Digital (virtual) phantoms
- Recommendations for commissioning and clinical implementation
- Recommendations for periodic and patient specific QA/QC
- Recommendations for clinical processes

Summary

- Deformable registration is a complex model
 - Must understand the fundamentals of the model
 - Commission and Validate the algorithm prior to clinical implementation
- Translation of geometric uncertainties to dosimetric error is complex and depends on complexity of motion and image intensity variation in the region
- Rigorous quantitative commissioning must be performed
 - Consistent with other technology in radiation oncology
- Efficient and effective QA/QC must be in place for clinical use