

Clinically Focused Physics Education The Foundation for Image Quality and Effective Dose Management

Perry Sprawls, Ph.D.

Distinguished Emeritus Professor
Emory University
and

Sprawls Education Foundation
http://www.sprawls.org

Clinically Focused Physics Education

Clinical Radiology

Levels of Learning

Learning Activities Effectiveness and Efficience

RESOURCES

SEAAPM 2012

Today

Our Clinical Physics Activities

Quality Assurance
Consulting
Teaching

Clinical Medicine

Imaging

Radiation Therapy

Physics
The Foundation Science

Effective and Safe Clinical Procedures

Imaging

Radiation Therapy

Require an extensive knowledge of Applied Physics and The Associated Technology

Who needs a knowledge of Physics applied to clinical imaging?

Radiologists, Residents and Fellows

Technologists

Medical Physicists

Each provides unique challenges and opportunities.

Physics Learning Objectives for Radiologists

Why an Evolving Model?

Three Dynamics....

- 1. Rapidly expanding **NEEDS** for physics knowledge.
- 2. Expanding availability of educational RESOURCES.
- 3. Better knowledge of the learning and teaching process.

Continuing Growth in the Need for Physics Knowledge

Time

Digital Resources to Enrich Learning Activities

Textbooks Modules

Visuals

Clinical Images

Teachi Modules

References Teaching Files

Classroom

Clinical Conference

Small Group

"Flying Solo"

Clinically Focused Physics Education

Classroom

Clinical Conference Small Group

"Flying Solo"

Learning Facilitator "Teacher" Individual and Peer Interactive Learning

Each type of learning activity has a unique value.

Clinically Focused Physics Education

Classroom

Clinical Conference

Small Group

"Flying Solo"

Learning Facilator "Teacher"

The Goal...

Individual and Peer Interactive Learning

Increase the EFFECTIVENESS of each type of learning activity with the necessary resources and understanding of the process by the Learning Facilators.

Sprawls

The Barrier

Physics Education

Clinical Imaging

Efficiency

Location, Resources, Human Effort, Cost

Limited Experience

Learning is....

Building knowledge structures in the brain

Image: UCDavis

The Brain...

Structure and Function

Image: AMA

Zull's Model of Brain Function

Reference:

Kolb's Experiential Learning Model

David A. Kolb, Ph.D.

Professor of Organizational Behavior

Case Western Reserve

Website: http://www.learningfromexperience.com

Zull's Model of Brain Function

Control

Sensory

Where

(Relationships)

(Characteristics)

What

(Identification)

Language

Comprehension

Making Plans Evaluating Problem Solving

Assembly

Motor

Emotions

Control

Sensory

Frontal Integrative Cortex

Records
of the
Past

Preparation for the Future

Reflection

Hypotheses

Motor

Emotions

Control

Sensory

Frontal Integrative Cortex

-

Records
of the
Past

Preparation for the Future

Knowing

Doing

Motor

Emotions

Physical Universe

Back Integrative Cortex

Visible Physical Objects

Physical Universe

Back Integrative Cortex

Visible Physical Objects

Physical Universe

Back Integrative Cortex

Radiation **Electrons** Magnetic **Atomic** Nuclear

Invisible Physical Objects

Physical Universe

Back Integrative Cortex

Radiation Electrons Magnetic Atomic Nuclear

Invisible

Physical Objects

Visuals

Back Integrative Cortex

Integrating experience into existing

knowledge structure

Meaning

Back Integrative Cortex

Integrating experience into existing

knowledge structure

Meaning

Back Integrative Cortex Integrating experience into existing knowledge structure

Medical Knowledge

Back Integrative Cortex Integrating experience into existing knowledge structure

The image is the connection Sprawls

Back Integrative Cortex

Integrating experience into existing

knowledge structure Sensory

> The image is the starting point for learning physics

Computed Tomography

Radiation Dose

Imaging Protocols

Technology

Science

COMPUTED TOMOGRAPHY **QUALITY CHARACTERISTICS**

OPERATION

Zull's Model of Brain Function

Brain Functions for Learning Physics Active Experimentation and Testing

Physical Universe

The Learning Environment

Rich Learning Environments

Challenging Learning Environments

Robert Gagne (1916-2002)

Best known for his Nine Events of Instruction

The Gagne assumption is that different types of learning exist, and that different instructional conditions are most likely to bring about these different types of learning

Gagné was also well-known for his sophisticated stimulus-response theory of eight kinds of learning which differ in the quality and quantity of stimulus-response bonds involved. From the simplest to the most complex, these are:

signal learning (Pavlovian conditioning)
stimulus-response learning (operant conditioning)
chaining (complex operant conditioning)
verbal association
discrimination learning
concept learning
rule learning
and problem solving.

Gagne's Hierarchy of Learning

Edgar Dale (1900-1985)

Educationalist who developed the famous

Cone of Experience theory

Cone of Experience for Medical Imaging Education

VERBAL

SYMBOLS EQUATIONS

SKETCHES

VISUALS

Clinical Images and Graphics

VISUALS

With Expert Guidance

SIMULATION

PHYSICAL REALITY

Cone of Experience for Medical Imaging Education

Cone of Experience for Medical Imaging Education

LEARNING OUTCOMES

VERBAL

SYMBOLS EQUATIONS

SKETCHES

VISUALS
Clinical Images and Graphics

VISUALS

With Expert Guidance

SIMULATION

PHYSICAL REALITY

Define List Describe

Explain

Apply

Practice

Analyze
Create
Evaluate

Effective Learning

VERBAL

SYMBOLS EQUATIONS

SKETCHES

VISUALS

Clinical Images and Graphics

VISUALS

With Expert Guidance

SIMULATION

PHYSICAL REALITY

Experience

Learning

PROBLEM SOLVING

RULE LEARNING

CONCEPT LEARNING

DISCRIMINATION

VERBAL

ASSOCIATION

CHAINING

STIMULUS

RESPONSE

SIGNAL

LEARNING

Level

Technology Enhanced

Learning and Teaching

PROBLEM SOLVING

RULE LEARNING

CONCEPT LEARNING

DISCRIMINATION

VERBAL ASSOCIATION

CHAINING

STIMULUS

RESPONSE

SIGNAL

LEARNING

Experience

Learning

Level

Clinically Focused Physics Education

Classroom

Clinical Conference Small Group

"Flying Solo"

For General Physics and Related Topics

Highly Effective

Clinically Rich Learning Activities

Visuals Images Online Modules
Resources and References

Images

Physics Education

Radiation

Characteristics and Comparison of Modalities

Radiation for Imaging **Quantities and Units** X-Ray Production Radioactivity Interactions

Digital Image Structure and Characteristics

X-Ray Image Formation Radiographic Receptors Radiographic Detail Fluoroscopic Systems **CT Image Formation CT Image Quality and Dose Optimization** Radionuclide Imaging, SPECT, PET MRI **Ultrasound**

Radiation Safety

Biological Effects Personnel Protection **Patient Dose Management**

Rich Classroom and Conference Learning Activities

Learning Facilitator "Teacher"

Visuals

Representations of Reality

Organize and Guide the Learning Activity
Share Experience and Knowledge
Explain and Interpret What is Viewed
Motivate and Engage Learners

Technology Enhanced Learning

Visuals for Learning and Teaching

The Imaging Process

The Three Phases of CT Image Formation Scan Digital|Analog and Conversion Image and **Data Acquisition** Reconstruction Display Control Digital Image Scan Slice Th. Beam Wid. Zoom **Major Control Factors** Sprawls

Clinical Images

In Partnership with Other Medical Physics Teachers to be More Effective and Efficient in Providing Medical Imaging Education

The Physics and Technology of M... 🔝

Mammography Physics and Technology for effective clinical imaging

Perry Sprawls, Ph.D.

Outline	Mind Map	Learning Objectives	Visuals for Discussion	Text Reference

To step through module, CLICK HERE.

To go to a specific topic click on it below

Imaging Objectives	Rhodium Anode	Blurring and Visibility of Detail
Visibility of Pathology	KV Values for Mammography	Focal Spot Blurring
Image Quality Characteristics	Scattered Radiation and Contrast	Receptor Blurring
Not a Perfect Image	Image Exposure Histogram	Composite Blurring
Mammography Technology	Receptor & Display Systems	Magnification Mammography
Imaging Technique Factors	<u>Film Contrast Transfer</u>	Mean Glandular Dose
Contrast Sensitivity	Film Contrast Factors	
Physical Contrast Compared	Film Design for Mammography	
Factors Affecting Contrast Sensitivity	Controlling Receptor (Film) Exposure	
X-Ray Penetration and Contrast	Film Processing	
Optimum X-Ray Spectrum	Variations in Receptor Sensitivity	
Effect of Breast Size	Film Viewing Conditions	

The Physics and Technology of M... 🔃 17

Edit View

e x-ray beam spectrum is one of the most critical factors that must be justed to optimize a procedure with respect to contrast sensitivity and dose.

KV Values for Mammography

- e can think of it as a three-step procedure:
- 1. Select the appropriate anode (moly or rhodium) 2. Select the appropriate filter (moly or rhodium)
- Select the appropriate KV (In the range 24 kV to 32 kV)

reasing the KV has two effects on the x-ray beam. It increases the efficiency d output for a specific MAS value and it shifts the photon energy spectrum

nile a more penetrating beam does reduce contrast sensitivity it is necessary en imaging thicker and more dense breast. Therefore compressed breast thickness is the principal factor that determines the optimum

10 ward so that the beam becomes more penetrating. 25 30 PHOTON ENERGY (keV) Thrawls

Mammography systems have indicators that display the thickness of the compressed breast. This along with a general assessment of breast density is used to manually select an optimum KV either from experience or an established technique chart.

BACK

X-RAY SPECTRUM

for

MAMMOGRAPHY

NEXT

The general goal is to increase the KV as necessary to keep the exposure time, MAS, and dose to the breast within reasonable limits as breast thickness increases.

B

Reference

Contrast

Noise

Reference

Contrast

Detail

Noise

Low

Low

Reference

The Three Phases of CT Image Formation

Major Protocol Factors

CT Slice Divided into Matrix of Voxels

Voxel Size Controlled By

The Quantum Structure of the X-ray Beam

X-ray Photons Interact With Tissue in A Voxel

Dose is increased by increasing number of photons. Noise is reduced by increasing number of photons.

SPIRAL SCAN

CT Dose Quantities

Decreasing Noise

Requires Increased Photons Absorbed Per Voxel

Produces Increasing Dose

Effect of Matrix Size on Image Noise

Large

Large Voxels

Low Noise

Small Voxels

High Noise

The same radiation dose for both images.

Factors That Determine Image Noise

Two Major Image Quality Goals

Protocol Factors

Relationship of Radiation Dose to Image Detail **Lower Dose**

When detail is increased by

Increasing

Decreasing

Noise Increases

> Because of decreased voxel size

Higher Dose

Dose must be increased to reduce noise.

Factors That Determine Image Detail (Sources of Blurring)

CT Image Reconstruction

Reconstruction Filter Kernels

(Effects exaggerated for illustration here)

Scan Data Set

The Values We Hold

The PHYSICIST is the TEACHER

TECHNOLOGY is the TOOL that can be used for effective and efficient teaching.

Technology should be used to enhance human performance of both learners (residents, students, etc.)

And teachers

Clinically Focused Physics Education

Website

.http://www.sprawls.org/clinphys